NuSerum, a synthetic serum replacement, supports chondrogenesis of embryonic chick limb bud mesenchymal cells in micromass culture

1993 ◽  
Vol 29 (12) ◽  
pp. 917-922 ◽  
Author(s):  
Mayme Wong ◽  
Rocky S. Tuan
Development ◽  
1979 ◽  
Vol 50 (1) ◽  
pp. 75-97
Author(s):  
Robert A. Kosher ◽  
Mary P. Savage ◽  
Sai-Chung Chan

It has been suggested that one of the major functions of the apical ectodermal ridge (AER) of the embryonic chick limb-bud is to maintain mesenchymal cells directly subjacent to it (i.e. cells extending 00·4–00·5 mm from the AER) in a labile, undifferentiated condition. We have attempted to directly test this hypothesis by subjecting the undifferentiated subridgemesoderm of stage-25 embryonic chick wing-buds to organ culture in the presence and absence of the AER and the ectoderm that normally surrounds the mesoderm dorsally and ventrally. During the period of culture, control explants comprised of the subridge mesoderm capped by the AER and surrounded by the dorsal/ventral ectoderm undergo progressivemorphogenesis characterized by polarized proximal to distal outgrowth and changes in the contour of the developing explant, and ultimately form a structure grossly resembling a normal distal wing-bud tip. In contrast, explants from which the AER and dorsal/ventral ectoderm have been removed (minus ectoderm explants) or from which just the AER has been removed (minus AER explants) form compact, rounded masses exhibiting no signs of morphogenesis. During the polarized proximal to distal outgrowth control explants undergo during the first 3 days of culture, as cells of the explant become located greater than 0·4– 0·5 mm from the AER, they concomitantly undergo a sequence of changes indicative of their differentiation into cartilage. However, those cells which remain 0·4–0·5 mm from the AER during this period retain the characteristics of non-specialized mesenchymal cells. In marked contrast to control explants, virtually all of the cells of minus ectoderm explants initiate chondrogenic differentiation during the first day of culture. Cells comprising the central core of minus AER explants also initiate chondrogenic differentiation during the first day of culture, but in contrast to minus ectoderm explants, non-chondrogenic tissue types form along the periphery of the explants subjacent to the dorsal/ventral ectoderm. These results indicate that the AER maintains cells directly subjacent to it in a labile, undifferentiated condition, and that when mesenchymal cells are freed from the AER's influence either artificially or as a result of normal polarized outgrowth, they are freed to commence cytodifferentiation. The results further suggest that the dorsal/ventral ectoderm may have an influence on the differentiation of the mesenchymal cells directly subjacent to it, once the cells have been removed from the influence of the AER.


Development ◽  
1993 ◽  
Vol 119 (1) ◽  
pp. 199-206 ◽  
Author(s):  
A. Vogel ◽  
C. Tickle

The polarizing region is a major signalling tissue involved in patterning the tissues of the vertebrate limb. The polarizing region is located at the posterior margin of the limb bud and can be recognized by its ability to induce additional digits when grafted to the anterior margin of a chick limb bud. The signal from the polarizing region operates at the tip of the bud in the progress zone, a zone of undifferentiated mesenchymal cells, maintained by interactions with the apical ectodermal ridge. A number of observations have pointed to a link between the apical ectodermal ridge and signalling by the polarizing region. To test this possibility, we removed the posterior apical ectodermal ridge of chick wing buds and assayed posterior mesenchyme for polarizing activity. When the apical ectodermal ridge is removed, there is a marked decrease in polarizing activity of posterior cells. The posterior apical ectodermal ridge is known to express FGF-4 and we show that the decrease in polarizing activity of posterior cells of wing buds that normally follows ridge removal can be prevented by implanting a FGF-4-soaked bead. Furthermore, we show that both ectoderm and FGF-4 maintain polarizing activity of limb bud cells in culture.


Development ◽  
1980 ◽  
Vol 56 (1) ◽  
pp. 191-200
Author(s):  
Stuart A. Newman

A population of mesenchymal cells derived from the stage-25 chick wing tip gives rise to progeny of a similar morphology and to authentic fibroblasts when grown in low densityculture. Mixed clones containing both cell types are often observed. As the more rapidly proliferating fibroblasts begin to predominate in these cultures, collagen biosynthesisrises from the basal mesenchymal level to a level characteristic of mature fibroblasts. Thefibroblast progenitor is discussed relative to the other cell types of the mesodermal lineage of the developing limb.


Development ◽  
1973 ◽  
Vol 30 (3) ◽  
pp. 673-679
Author(s):  
P. V. Thorogood

Myotubes are present in the developing hind limb of the embryonic chick at 5 days. An immunofluorescence technique was used to detect actomyosin within the myotubes. The earliest detectable appearance of this muscle protein was at six days of development, at sites located peripherally beneath the flattened dorsal and ventral surface of the limb. These dorsal and ventral loci are interpreted as representing the primordial extensor and flexor muscles. At the ultrastructural level the cytoplasm of the myotubes contains fibrillar components which are apparently aggregating to form myofibrils. A rudimentary banding pattern can be distinguished.


Development ◽  
1980 ◽  
Vol 59 (1) ◽  
pp. 325-339
Author(s):  
T. E. Kwasigroch ◽  
D. M. Kochhar

Two techniques were used to examine the effect of vitamin A compounds (vitamin A acid = retinoic acid and vitamin A acetate) upon the relative strengths of adhesion among mouse limb-bud mesenchymal cells. Treatment with retinoic acid in vivo and with vitamin A acetate in vitro reduced the rate at which the fragments of mesenchyme rounded-up when cultured on a non-adhesive substratum, but these compounds did not alter the behavior of tissues tested in fragment-fusion experiments. These conflicting results indicate that the two tests measure different activities of cells and suggest that treatment with vitamin A alters the property(ies) of cells which regulate the internal viscosity of tissues.


1968 ◽  
Vol 17 (4) ◽  
pp. 382-399 ◽  
Author(s):  
Robert L. Searls
Keyword(s):  
Limb Bud ◽  

2011 ◽  
Vol 28 (2) ◽  
pp. 89-98 ◽  
Author(s):  
Tahereh Talaei-Khozani ◽  
Malihezaman Monsefi ◽  
Mansoureh Ghasemi
Keyword(s):  

1997 ◽  
Vol 45 (11) ◽  
pp. 1567-1581 ◽  
Author(s):  
Anthony A. Capehart ◽  
Matthew M. Wienecke ◽  
Gregory T. Kitten ◽  
Michael Solursh ◽  
Edward L. Krug

We report the production of a monoclonal antibody (d1C4) by in vitro immunization that has immunoreactivity with a native chondroitin sulfate epitope in embryonic chick limb and heart. Murine lymphocytes were stimulated by direct exposure to unfixed, unsolubilized precartilage mesenchymal aggregates in high-density micromass culture derived from Stage 22–23 chick limb buds. Specificity of d1C4 reactivity was demonstrated by sensitivity of immunohistochemical staining to pretreatment with chondroitinase ABC or AC, preferential immunoreactivity with chondroitin-6-sulfate glycosaminoglycan (CS-C GAG) in ELISA, and competition of immunohistochemical staining with CS-C GAG. Immunohistochemical analysis of the expression of the d1C4 epitope revealed a striking localization of immunoreactivity in the extracellular matrix (ECM) of precartilage aggregates of chick limb mesenchyme in high-density micromass culture by 16 hr and the prechondrogenic limb core at Stage 23 in vivo. Immunoreactivity in both cultured limb mesenchyme and the embryonic limb continued through differentiation of prechondrogenic condensations into cartilage tissue. In the developing chick heart, d1C4 staining was found throughout the ECM of atrioventricular cushion tissue by Stage 25, but was localized to mesenchyme adjacent to the myocardium in the outflow tract cushions. There was an abrupt demarcation between d1C4-reactive intracardiac mesenchyme and unreactive extracardiac mesenchyme of the dorsal mesocardium in the Stage 22 embryo. This study demonstrates the efficacy of in vitro immunization of lymphocytes for the production of MAbs to native ECM constituents, such as CS-GAGs. Immunohistochemical data utilizing d1C4 suggest that CS-GAGs bearing this epitope may be important in early morphogenetic events leading to cartilage differentiation in the limb and valvuloseptal morphogenesis in the heart. (J Histochem Cytochem 45:1567–1581, 1997)


1992 ◽  
Vol 14 (2) ◽  
pp. 45-50 ◽  
Author(s):  
Barthold Vonen ◽  
Kjell Bertheussen ◽  
Anton K. Gi�ver ◽  
Jon Florholmen ◽  
Per G. Burhol

Sign in / Sign up

Export Citation Format

Share Document