Residual and trace element effects on the high-temperature creep strength of austenitic stainless steels

1983 ◽  
Vol 14 (3) ◽  
pp. 581-593 ◽  
Author(s):  
R. W. Swindeman ◽  
V. K. Sikka ◽  
R. L. Klueh
1981 ◽  
Vol 16 (10) ◽  
pp. 2860-2866 ◽  
Author(s):  
P. R. Howell ◽  
J. O. Nilsson ◽  
A. Horsewell ◽  
G. L. Dunlop

1979 ◽  
Vol 101 (3) ◽  
pp. 275-283 ◽  
Author(s):  
G. J. Lloyd ◽  
J. Wareing

The distinction between stable and unstable fatigue crack propagation during high temperature creep-fatigue in austenitic stainless steels is introduced. The transition from one class of behavior to the other is related to the precipitate distribution and to the nature of the prevailing crack path. It is shown by reference to new studies and examples drawn from the literature that this behavior is common to both high strain and predominantly elastic fatigue in austenitic stainless steels. The relevance of this distinction to a mechanistic approach to high temperature plant design is discussed.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Philip J. Maziasz ◽  
John P. Shingledecker ◽  
Neal D. Evans ◽  
Michael J. Pollard

Oak Ridge National Laboratory and Caterpillar (CAT) have recently developed a new cast austenitic stainless steel, CF8C-Plus, for a wide range of high-temperature applications, including diesel exhaust components and turbine casings. The creep-rupture life of the new CF8C-Plus is over ten times greater than that of the standard cast CF8C stainless steel, and the creep-rupture strength is about 50–70% greater. Another variant, CF8C-Plus Cu/W, has been developed with even more creep strength at 750–850°C. The creep strength of these new cast austenitic stainless steels is close to that of wrought Ni-based superalloys such as 617. CF8C-Plus steel was developed in about 1.5 years using an “engineered microstructure” alloy development approach, which produces creep resistance based on the formation of stable nanocarbides (NbC), and resistance to the formation of deleterious intermetallics (sigma, Laves) during aging or service. The first commercial trial heats (227.5 kg or 500 lb) of CF8C-Plus steel were produced in 2002, and to date, over 27,215 kg (300 tons) have been produced, including various commercial component trials, but mainly for the commercial production of the Caterpillar regeneration system (CRS). The CRS application is a burner housing for the on-highway heavy-duty diesel engines that begins the process to burn-off particulates trapped in the ceramic diesel particulate filter (DPF). The CRS/DPF technology was required to meet the new more stringent emissions regulations in January, 2007, and subjects the CRS to frequent and severe thermal cycling. To date, all CF8C-Plus steel CRS units have performed successfully. The status of testing for other commercial applications of CF8C-Plus steel is also summarized.


2001 ◽  
Vol 7 (S2) ◽  
pp. 544-545
Author(s):  
Philip J. Maziasz

Alloy development can range from purely empirical, trial-and-error efforts to very theoretical, based on either fundamental first-principles calculations or computational-modeling using various kinds of data base inputs. However, “real-world” efforts to improve or optimize complex engineering alloys often cannot afford the time or cost of either extreme approach. in the past 10-15 years, an alloy development and processing optimization methodology has been developed that utilizes strategic microanalytical data (both detailed microstucture and microcompositional information) as the critical input that then enables efficient and effective design of various kinds of alloys for improved high-temperature performance [1-6]. in many cases, first time tests produce outstanding high-temperature creep or creep-rupture results, and enable improvements without trading off one property for another. This invited paper will highlight several examples of significantly improved creep resistance obtained using such microstructural design.This microstructural design methodology for high-temperature creep-resistance was initially developed for and demonstrated in austenitic stainless steels (Fe-14Cr-16Ni) designed for improved creep-strength and rupture resistance at 700°C and above for superheater and boiler tubing in advanced fossil power plants.


Sign in / Sign up

Export Citation Format

Share Document