Effect of scattering on the contour of the radiation line of a plane layer of a selective medium

1999 ◽  
Vol 72 (5) ◽  
pp. 900-904
Author(s):  
M. L. German ◽  
D. Lempert ◽  
V. P. Nekrasov ◽  
E. F. Nogotov ◽  
S. Rozin
Author(s):  
L.A. Dell

A new method has been developed which readily offers the microscopist a possibility for both light and electron microscopic study of selected cells from the cerebrospinal fluid. Previous attempts to examine these cells in the spinal fluid at the ultrastructural level were based on modifications of cell pellet techniques developed for peripheral blood. These earlier methods were limited in application by the number of cells in spinal fluid required to obtain a sufficient size pellet and by the lack of an easy method of cellular identification between the light and electron microscopic level. The newly developed method routinely employs microscope slides coated with Siliclad and tungsten oxide for duplicate cytocentrifuge preparations of diagnostic spinal fluid specimens. Work done by Kushida and Suzuki provided a basis for our use of the metal oxide.


Author(s):  
Philip F Hopkins ◽  
T K Chan ◽  
Suoqing Ji ◽  
Cameron B Hummels ◽  
Dušan Kereš ◽  
...  

Abstract We study the effects of cosmic rays (CRs) on outflows from star-forming galaxies in the circum and inter-galactic medium (CGM/IGM), in high-resolution, fully-cosmological FIRE-2 simulations (accounting for mechanical and radiative stellar feedback, magnetic fields, anisotropic conduction/viscosity/CR diffusion and streaming, and CR losses). We showed previously that massive (Mhalo ≳ 1011 M⊙), low-redshift (z ≲ 1 − 2) halos can have CR pressure dominate over thermal CGM pressure and balance gravity, giving rise to a cooler CGM with an equilibrium density profile. This dramatically alters outflows. Absent CRs, high gas thermal pressure in massive halos “traps” galactic outflows near the disk, so they recycle. With CRs injected in supernovae as modeled here, the low-pressure halo allows “escape” and CR pressure gradients continuously accelerate this material well into the IGM in “fast” outflows, while lower-density gas at large radii is accelerated in-situ into “slow” outflows that extend to >Mpc scales. CGM/IGM outflow morphologies are radically altered: they become mostly volume-filling (with inflow in a thin mid-plane layer) and coherently biconical from the disk to >Mpc. The CR-driven outflows are primarily cool (T ∼ 105 K) and low-velocity. All of these effects weaken and eventually vanish at lower halo masses (≲ 1011 M⊙) or higher redshifts (z ≳ 1 − 2), reflecting the ratio of CR to thermal+gravitational pressure in the outer halo. We present a simple analytic model which explains all of the above phenomena. We caution that these predictions may depend on uncertain CR transport physics.


2021 ◽  
Vol 22 (7) ◽  
pp. 3784
Author(s):  
Véronique Noé ◽  
Carlos J. Ciudad

Therapeutic strategies for rare diseases based on exon skipping are aimed at mediating the elimination of mutated exons and restoring the reading frame of the affected protein. We explored the capability of polypurine reverse-Hoogsteen hairpins (PPRHs) to cause exon skipping in NB6 cells carrying a duplication of exon 2 of the DHFR gene that causes a frameshift abolishing DHFR activity. Methods: Different editing PPRHs were designed and transfected in NB6 cells followed by incubation in a DHFR-selective medium lacking hypoxanthine and thymidine. Surviving colonies were analyzed by DNA sequencing, RT-PCR, Western blotting and DHFR enzymatic activity. Results: Transfection of editing PPRHs originated colonies in the DHFR-selective medium. DNA sequencing results proved that the DHFR sequence in all these colonies corresponded to the wildtype sequence with just one copy of exon 2. In the edited colonies, the skipping of the additional exon was confirmed at the mRNA level, the DHFR protein was restored, and it showed high levels of DHFR activity. Conclusions: Editing-PPRHs are able to cause exon skipping at the DNA level and could be applied as a possible therapeutic tool for rare diseases.


Sign in / Sign up

Export Citation Format

Share Document