The attenuation length of the high energy nucleonic component of the cosmic radiation near sea level

1959 ◽  
Vol 13 (1) ◽  
pp. 96-107 ◽  
Author(s):  
K. G. McCracken ◽  
D. H. Johns

1953 ◽  
Vol 91 (6) ◽  
pp. 1573-1573 ◽  
Author(s):  
M. F. Kaplon ◽  
J. Z. Klose ◽  
D. M. Ritson ◽  
W. D. Walker


1983 ◽  
Vol 36 (5) ◽  
pp. 717 ◽  
Author(s):  
CBA McCusker

The flux of quarks in air shower cores at sea level is estimated from four different types of experiments. All four estimates agree and yield a quark flux of 8 x 10-12 cm-2 s- 1 sr- 1 ? The calculated concentration of quarks in the Earth's crust resulting from this flux is compared with that found in niobium in the Stanford quark search.



Radiocarbon ◽  
1971 ◽  
Vol 13 (2) ◽  
pp. 378-394 ◽  
Author(s):  
J. C. Vogel ◽  
M. Marais

In 1969 radiocarbon dating facilities were established at the National Physical Research Laboratory of the C.S.I.R. in Pretoria (25° 43′ S Lat, 28° 21′ E Long; alt 1500 m). The counters are situated in an underground room built of selected concrete and covered by ca. 12 m earth. In this room, the nucleonic component of cosmic radiation is practically absent and the meson flux is reduced by a factor of 3.5 as compared to the surface at sea level in Groningen, Netherlands. A neutron monitor which registers 30 cpm on the surface, counts ca. 0.1 cpm in the underground room.



The Holocene ◽  
2018 ◽  
Vol 29 (1) ◽  
pp. 26-44 ◽  
Author(s):  
Manel Leira ◽  
Maria C Freitas ◽  
Tania Ferreira ◽  
Anabela Cruces ◽  
Simon Connor ◽  
...  

We examine the Holocene environmental changes in a wet dune slack of the Portuguese coast, Poço do Barbarroxa de Baixo. Lithology, organic matter, biological proxies and high-resolution chronology provide estimations of sediment accumulation rates and changes in environmental conditions in relation to sea-level change and climate variability during the Holocene. Results show that the wet dune slack was formed 7.5 cal. ka BP, contemporaneous with the last stages of the rapid sea-level rise. This depositional environment formed under frequent freshwater flooding and water ponding that allowed the development and post-mortem accumulation of abundant plant remains. The wetland evolved into mostly palustrine conditions over the next 2000 years, until a phase of stabilization in relative sea-level rise, when sedimentation rates slowed down to 0.04 mm yr−1, between 5.3 and 2.5 cal. ka BP. Later, about 0.8 cal. ka BP, high-energy events, likely due to enhanced storminess and more frequent onshore winds, caused the collapse of the foredune above the wetlands’ seaward margin. The delicate balance between hydrology (controlled by sea-level rise and climate change), sediment supply and storminess modulates the habitat’s resilience and ecological stability. This underpins the relevance of integrating past records in coastal wet dune slacks management in a scenario of constant adaptation processes.



Physica ◽  
1942 ◽  
Vol 9 (2) ◽  
pp. 158-168 ◽  
Author(s):  
J. Clay ◽  
C. Levert


Author(s):  
Maurizio D'Anna ◽  
Deborah Idier ◽  
Bruno Castelle ◽  
Goneri Le Cozannet ◽  
Jeremy Rohmer ◽  
...  

Chronic erosion of sandy coasts is a continuous potential threat for the growing coastal communities worldwide. The prediction of shoreline evolution is therefore key issue for robust decision making worldwide, especially in the context of climate change. Shorelines respond to various complex processes interacting at several temporal and spatial scales, making shoreline reconstructions and predictions challenging and uncertain, especially on long time scales (e.g. decades or century). Despite the increasing progresses in addressing uncertainties related to the physics of Sea Level Rise, very little effort is made towards understanding and reducing the uncertainties related to wave driven coastal response. To fill this gap, we analyse the uncertainties associated with long-term (2 decades) modelling of the cross-shore transport dominated high-energy sandy coast around Truc Vert beach, SW France, which has been surveyed semi-monthly over the last 12 years.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/_NBJ2v-koMs



2009 ◽  
Vol 73 (5) ◽  
pp. 593-596
Author(s):  
D. M. Podorozhnyi ◽  
E. V. Atkin ◽  
L. S. Burylov ◽  
A. G. Voronin ◽  
N. V. Kuznetsov ◽  
...  


2020 ◽  
pp. 655-710
Author(s):  
Hermann Kolanoski ◽  
Norbert Wermes

Astroparticle physics deals with the investigation of cosmic radiation using similar detection methods as in particle physics, however, mostly with quite different detector arrangements. In this chapter the detection principles for the different radiation types with cosmic origin are presented, this includes charged particles, gamma radiation, neutrinos and possibly existing Dark Matter. In the case of neutrinos also experiments at accelerators and reactors are included. Examples, which are typical for the different areas, are given for detectors and their properties. For cosmic ray detection apparatuses are deployed above the atmosphere with balloons or satellites or on the ground using the atmosphere as calorimeter in which high-energy cosmic rays develop showers or in underground areas including in water and ice.



2015 ◽  
Vol 45 (suppl 1) ◽  
pp. 13-27 ◽  
Author(s):  
Roberto Cesar de Mendonça Barbosa ◽  
Afonso César Rodrigues Nogueira ◽  
Fábio Henrique Garcia Domingos

ABSTRACTGlaciotectonic features studied in the siliciclastic deposits of Cabeças Formation, Upper Devonian, represent the first evidence of Famennian glaciation in Southeastern Parnaíba Basin, Brazil. Outcrop-based stratigraphic and facies analyses combined with geometric-structural studies of these deposits allowed defining three facies association (FA). They represent the advance-retreat cycle of a glacier. There are: delta front facies association (FA1) composed of massive mudstone, sigmoidal, medium-grained sandstone with cross-bedding and massive conglomerate organized in coarsening- and thickening-upward cycles; subglacial facies association (FA2) with massive, pebbly diamictite (sandstone, mudstone and volcanic pebbles) and deformational features, such as intraformational breccia, clastic dikes and sills of diamictite, folds, thrust and normal faults, sandstone pods and detachment surface; and melt-out delta front facies associations (FA3), which include massive or bedded (sigmoidal cross-bedding or parallel bedding) sandstones. Three depositional phases can be indicated to Cabeças Formation: installation of a delta system (FA1) supplied by uplifted areas in the Southeastern border of the basin; coastal glacier advance causing tangential substrate shearing and erosion (FA1) in the subglacial zone (FA2), thus developing detachment surface, disruption and rotation of sand beds or pods immersed in a diamicton; and retreat of glaciers accompanied by relative sea level-rise, installation of a high-energy melt-out delta (FA3) and unloading due to ice retreat that generates normal faults, mass landslide, folding and injection dykes and sills. The continuous sea-level rise led to the deposition of fine-grained strata of Longá Formation in the offshore/shoreface transition in the Early Carboniferous.





Sign in / Sign up

Export Citation Format

Share Document