L(log L) spaces and weights for the strong maximal function

1984 ◽  
Vol 44 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Richard J. Bagby ◽  
Douglas S. Kurtz
Keyword(s):  
1981 ◽  
Vol 69 (2) ◽  
pp. 155-158 ◽  
Author(s):  
N. Fava ◽  
E. Gatto ◽  
C. Gutiérrez
Keyword(s):  

2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.


2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Feng Liu

Abstract In this note we study the rough singular integral $$ T_{\varOmega }f(x)=\mathrm{p.v.} \int _{\mathbb{R}^{n}}f(x-y)\frac{\varOmega (y/ \vert y \vert )}{ \vert y \vert ^{n}}\,dy, $$ T Ω f ( x ) = p . v . ∫ R n f ( x − y ) Ω ( y / | y | ) | y | n d y , where $n\geq 2$ n ≥ 2 and Ω is a function in $L\log L(\mathrm{S} ^{n-1})$ L log L ( S n − 1 ) with vanishing integral. We prove that $T_{\varOmega }$ T Ω is bounded on the mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}( \mathbb{R}^{n})$ L | x | p L θ p ˜ ( R n ) , on the vector-valued mixed radial-angular spaces $L_{|x|}^{p}L_{\theta }^{\tilde{p}}(\mathbb{R}^{n},\ell ^{\tilde{p}})$ L | x | p L θ p ˜ ( R n , ℓ p ˜ ) and on the vector-valued function spaces $L^{p}(\mathbb{R}^{n}, \ell ^{\tilde{p}})$ L p ( R n , ℓ p ˜ ) if $1<\tilde{p}\leq p<\tilde{p}n/(n-1)$ 1 < p ˜ ≤ p < p ˜ n / ( n − 1 ) or $\tilde{p}n/(\tilde{p}+n-1)< p\leq \tilde{p}<\infty $ p ˜ n / ( p ˜ + n − 1 ) < p ≤ p ˜ < ∞ . The same conclusions hold for the well-known Riesz transforms and directional Hilbert transforms. It should be pointed out that our proof is based on the Calderón–Zygmund’s rotation method.


Author(s):  
André Guerra ◽  
Lukas Koch ◽  
Sauli Lindberg

AbstractWe study existence and regularity of solutions to the Dirichlet problem for the prescribed Jacobian equation, $$\det D u =f$$ det D u = f , where f is integrable and bounded away from zero. In particular, we take $$f\in L^p$$ f ∈ L p , where $$p>1$$ p > 1 , or in $$L\log L$$ L log L . We prove that for a Baire-generic f in either space there are no solutions with the expected regularity.


2001 ◽  
Vol 8 (4) ◽  
pp. 727-732
Author(s):  
L. Ephremidze

Abstract The equivalence of the decreasing rearrangement of the ergodic maximal function and the maximal function of the decreasing rearrangement is proved. Exact constants are obtained in the corresponding inequalities.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Takeshi Iida

The aim of this paper is to prove the boundedness of the Hardy-Littlewood maximal operator on weighted Morrey spaces and multilinear maximal operator on multiple weighted Morrey spaces. In particular, the result includes the Komori-Shirai theorem and the Iida-Sato-Sawano-Tanaka theorem for the Hardy-Littlewood maximal operator and multilinear maximal function.


2005 ◽  
Vol 97 (1) ◽  
pp. 25-55 ◽  
Author(s):  
Sundaram Thangavelu ◽  
Yuan Xu

Sign in / Sign up

Export Citation Format

Share Document