scholarly journals Convolution operator and maximal function for the Dunkl transform

2005 ◽  
Vol 97 (1) ◽  
pp. 25-55 ◽  
Author(s):  
Sundaram Thangavelu ◽  
Yuan Xu

Author(s):  
D. V. Gorbachev ◽  
V. I. Ivanov ◽  
S. Yu. Tikhonov




2020 ◽  
Vol 26 (2) ◽  
pp. 185-192
Author(s):  
Sunanda Naik ◽  
Pankaj K. Nath

AbstractIn this article, we define a convolution operator and study its boundedness on mixed-norm spaces. In particular, we obtain a well-known result on the boundedness of composition operators given by Avetisyan and Stević in [K. Avetisyan and S. Stević, The generalized Libera transform is bounded on the Besov mixed-norm, BMOA and VMOA spaces on the unit disc, Appl. Math. Comput. 213 2009, 2, 304–311]. Also we consider the adjoint {\mathcal{A}^{b,c}} for {b>0} of two parameter families of Cesáro averaging operators and prove the boundedness on Besov mixed-norm spaces {B_{\alpha+(c-1)}^{p,q}} for {c>1}.



2021 ◽  
Vol 19 (1) ◽  
pp. 515-530
Author(s):  
Xiao Yu ◽  
Pu Zhang ◽  
Hongliang Li

Abstract In this paper, we study the equivalent conditions for the boundedness of the commutators generated by the multilinear maximal function and the bounded mean oscillation (BMO) function on Morrey space. Moreover, the endpoint estimate for such operators on generalized Morrey spaces is also given.



2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Michael Herrmann ◽  
Karsten Matthies

AbstractWe study the eigenvalue problem for a superlinear convolution operator in the special case of bilinear constitutive laws and establish the existence and uniqueness of a one-parameter family of nonlinear eigenfunctions under a topological shape constraint. Our proof uses a nonlinear change of scalar parameters and applies Krein–Rutman arguments to a linear substitute problem. We also present numerical simulations and discuss the asymptotics of two limiting cases.



Author(s):  
Maxime Martineau ◽  
Romain Raveaux ◽  
Donatello Conte ◽  
Gilles Venturini


2001 ◽  
Vol 8 (4) ◽  
pp. 727-732
Author(s):  
L. Ephremidze

Abstract The equivalence of the decreasing rearrangement of the ergodic maximal function and the maximal function of the decreasing rearrangement is proved. Exact constants are obtained in the corresponding inequalities.



2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Saqib Hussain ◽  
Akhter Rasheed ◽  
Muhammad Asad Zaighum ◽  
Maslina Darus

We investigate some subclasses ofk-uniformly convex andk-uniformly starlike functions in open unit disc, which is generalization of class of convex and starlike functions. Some coefficient inequalities, a distortion theorem, the radii of close-to-convexity, and starlikeness and convexity for these classes of functions are studied. The behavior of these classes under a certain modified convolution operator is also discussed.



2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Takeshi Iida

The aim of this paper is to prove the boundedness of the Hardy-Littlewood maximal operator on weighted Morrey spaces and multilinear maximal operator on multiple weighted Morrey spaces. In particular, the result includes the Komori-Shirai theorem and the Iida-Sato-Sawano-Tanaka theorem for the Hardy-Littlewood maximal operator and multilinear maximal function.



Sign in / Sign up

Export Citation Format

Share Document