An image encryption method based on bit plane hiding technology

2006 ◽  
Vol 11 (5) ◽  
pp. 1283-1286
Author(s):  
Liu Bin ◽  
Li Zhitang ◽  
Tu Hao
2014 ◽  
Vol 539 ◽  
pp. 479-484
Author(s):  
Shu Juan Zhang ◽  
Yun He

Bit-plane decomposition makes images obtain a number of layers. According to the amount of data information, images are encrypted, and the paper proposes image encryption method with Chaotic Mapping based on multi-layer parameter disturbance. The advantage of multi-layer parameter disturbance is that it not only scrambles pixel location of images, but also changes pixel values of images. Bit-plane decomposition can increase the space of key. And using chaotic sequence generated by chaotic system with different complexities to encrypt layers with different information content can save operation time. The simulation experiments show that using chaotic mapping in image encryption method based on multi-layer parameter disturbance can cover plaintext effectively and safely, which makes it achieve ideal encryption effect.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 505
Author(s):  
Shuqin Zhu ◽  
Congxu Zhu

This paper analyzes the security of image encryption systems based on bit plane extraction and multi chaos. It includes a bit-level permutation for high, 4-bit planes and bit-wise XOR diffusion, and finds that the key streams in the permutation and diffusion phases are independent of the plaintext image. Therefore, the equivalent diffusion key and the equivalent permutation key can be recovered by the chosen-plaintext attack method, in which only two special plaintext images and their corresponding cipher images are used. The effectiveness and feasibility of the proposed attack algorithm is verified by a MATLAB 2015b simulation. In the experiment, all the key streams in the original algorithm are cracked through two special plaintext images and their corresponding ciphertext images. In addition, an improved algorithm is proposed. In the improved algorithm, the generation of a random sequence is related to ciphertext, which makes the encryption algorithm have the encryption effect of a “one time pad”. The encryption effect of the improved algorithm is better than that of the original encryption algorithm in the aspects of information entropy, ciphertext correlation analysis and ciphertext sensitivity analysis.


2017 ◽  
Vol 10 (6) ◽  
pp. 221-229 ◽  
Author(s):  
Sandhya Halagowda ◽  
◽  
Sudha Lakshminarayana ◽  

2019 ◽  
Vol 68 (11) ◽  
pp. 110502
Author(s):  
Si-Xing Xi ◽  
Na-Na Yu ◽  
Xiao-Lei Wang ◽  
Qiao-Fen Zhu ◽  
Zhao Dong ◽  
...  

Author(s):  
Sabyasachi Pramanik ◽  
Ramkrishna Ghosh ◽  
Mangesh M. Ghonge ◽  
Vipul Narayan ◽  
Mudita Sinha ◽  
...  

In the information technology community, communication is a vital issue. And image transfer creates a major role in the communication of data through various insecure channels. Security concerns may forestall the direct sharing of information and how these different gatherings cooperatively direct data mining without penetrating information security presents a challenge. Cryptography includes changing over a message text into an unintelligible figure and steganography inserts message into a spread media and shroud its reality. Both these plans are successfully actualized in images. To facilitate a safer transfer of image, many cryptosystems have been proposed for the image encryption scheme. This chapter proposes an innovative image encryption method that is quicker than the current researches. The secret key is encrypted using an asymmetric cryptographic algorithm and it is embedded in the ciphered image using the LSB technique. Statistical analysis of the proposed approach shows that the researcher's approach is faster and has optimal accuracy.


2019 ◽  
Vol 48 (7) ◽  
pp. 710002 ◽  
Author(s):  
郭媛 GUO Yuan ◽  
许鑫 XU Xin ◽  
敬世伟 JING Shi-wei ◽  
杜松英 DU Song-ying

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xuncai Zhang ◽  
Lingfei Wang ◽  
Ying Niu ◽  
Guangzhao Cui ◽  
Shengtao Geng

In this paper, an image encryption algorithm based on the H-fractal and dynamic self-invertible matrix is proposed. The H-fractal diffusion encryption method is firstly used in this encryption algorithm. This method crosses the pixels at both ends of the H-fractal, and it can enrich the means of pixel diffusion. The encryption algorithm we propose uses the Lorenz hyperchaotic system to generate pseudorandom sequences for pixel location scrambling and self-invertible matrix construction to scramble and diffuse images. To link the cipher image with the original image, the initial values of the Lorenz hyperchaotic system are determined using the original image, and it can enhance the security of the encryption algorithm. The security analysis shows that this algorithm is easy to implement. It has a large key space and strong key sensitivity and can effectively resist plaintext attacks.


Sign in / Sign up

Export Citation Format

Share Document