pixel location
Recently Published Documents


TOTAL DOCUMENTS

72
(FIVE YEARS 17)

H-INDEX

7
(FIVE YEARS 1)

Author(s):  
Siddhartha Gairola ◽  
Murtuza Bohra ◽  
Nadeem Shaheer ◽  
Navya Jayaprakash ◽  
Pallavi Joshi ◽  
...  

Keratoconus is a severe eye disease affecting the cornea (the clear, dome-shaped outer surface of the eye), causing it to become thin and develop a conical bulge. The diagnosis of keratoconus requires sophisticated ophthalmic devices which are non-portable and very expensive. This makes early detection of keratoconus inaccessible to large populations in low-and middle-income countries, making it a leading cause for partial/complete blindness among such populations. We propose SmartKC, a low-cost, smartphone-based keratoconus diagnosis system comprising of a 3D-printed placido's disc attachment, an LED light strip, and an intelligent smartphone app to capture the reflection of the placido rings on the cornea. An image processing pipeline analyzes the corneal image and uses the smartphone's camera parameters, the placido rings' 3D location, the pixel location of the reflected placido rings and the setup's working distance to construct the corneal surface, via the Arc-Step method and Zernike polynomials based surface fitting. In a clinical study with 101 distinct eyes, we found that SmartKC achieves a sensitivity of 87.8% and a specificity of 80.4%. Moreover, the quantitative curvature estimates (sim-K) strongly correlate with a gold-standard medical device (Pearson correlation coefficient = 0.77). Our results indicate that SmartKC has the potential to be used as a keratoconus screening tool under real-world medical settings.


2021 ◽  
Vol 7 (2) ◽  
pp. 25-28
Author(s):  
Julio C. Alvarez-Gomez ◽  
Gerardo Jimenez Palavicini ◽  
Hubert Roth ◽  
Jürgen Wahrburg

Abstract A key component of an intensity-based 2D/3D registration is the digitally reconstructed radiograph (DRR) module, which creates 2D projections from pre-operative 3D data, e.g., CT and MRI scans. On average, an intensity-based 2D/3D registration requires ten iterations and the rendering of twelve DRR images per iteration. In a typical DRR implementation, the rendering time is about two seconds, and the registration runtime is four minutes. We present an implementation of the Siddon-Jacobs algorithm that uses a novel pixel-step approach to determine the pixel location of the rendering plane. In addition, we calculate the intensity of each pixel in the rendering plane using a parallel computing approach. The DRR rendering time is reduced to 10ms on average so that the registration runtime can be achieved in an average of 4.8 seconds.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Md. Ahasan Kabir

AbstractThis study presents the vulnerability of digital documents and its effective way to protect the ownership and detection of unauthorized modification of multimedia data. Watermarking is an effective way to protect vulnerable data in a digital environment. In this paper, a watermarking algorithm has been proposed based on a lossy compression algorithm to ensure authentication and detection of forgery. In this proposed method, the CDF9/7 biorthogonal wavelet is used to transform the watermark image and encoded the wavelet coefficients using Set Partition in Hierarchical Tree algorithm. Then, the encoded bits are encrypted by shuffling and encrypting using symmetric keys. After that the encrypted bits are inserted into the Least Significant Bit position of the cover image. In addition, two tamper detection bits are generated based on texture information and pixel location and inserted in the watermarked image. The proposed algorithm reconstructs the watermark and the tampering region more efficiently and achieved 56.5463 dB PSNR for STARE database. Experimental result shows that the proposed algorithm is effectively prevented different attacks and ensure the integrity of watermark bits within the watermarked image. Also finds the tampered region more efficiently compared with the existing state of art algorithms.


2020 ◽  
Vol 12 (24) ◽  
pp. 4125
Author(s):  
Lu She ◽  
Hankui K. Zhang ◽  
Zhengqiang Li ◽  
Gerrit de Leeuw ◽  
Bo Huang

Spectral aerosol optical depth (AOD) estimation from satellite-measured top of atmosphere (TOA) reflectances is challenging because of the complicated TOA-AOD relationship and a nexus of land surface and atmospheric state variations. This task is usually undertaken using a physical model to provide a first estimate of the TOA reflectances which are then optimized by comparison with the satellite data. Recently developed deep neural network (DNN) models provide a powerful tool to represent the complicated relationship statistically. This study presents a methodology based on DNN to estimate AOD using Himawari-8 Advanced Himawari Imager (AHI) TOA observations. A year (2017) of AHI TOA observations over the Himawari-8 full disk collocated in space and time with Aerosol Robotic Network (AERONET) AOD data were used to derive a total of 14,154 training and validation samples. The TOA reflectance in all six AHI solar bands, three TOA reflectance ratios derived based on the dark-target assumptions, sun-sensor geometry, and auxiliary data are used as predictors to estimate AOD at 500 nm. The DNN AOD is validated by separating training and validation samples using random k-fold cross-validation and using AERONET site-specific leave-one-station-out validation, and is compared with a random forest regression estimator and Japan Meteorological Agency (JMA) AOD. The DNN AOD shows high accuracy: (1) RMSE = 0.094, R2 = 0.915 for k-fold cross-validation, and (2) RMSE = 0.172, R2 = 0.730 for leave-one-station-out validation. The k-fold cross-validation overestimates the DNN accuracy as the training and validation samples may come from the same AHI pixel location. The leave-one-station-out validation reflects the accuracy for large-area applications where there are no training samples for the pixel location to be estimated. The DNN AOD has better accuracy than the random forest AOD and JMA AOD. In addition, the contribution of the dark-target derived TOA ratio predictors is examined and confirmed, and the sensitivity to the DNN structure is discussed.


2020 ◽  
Vol 117 (47) ◽  
pp. 29363-29370 ◽  
Author(s):  
Stephen Sebastian ◽  
Eric S. Seemiller ◽  
Wilson S. Geisler

A fundamental natural visual task is the identification of specific target objects in the environments that surround us. It has long been known that some properties of the background have strong effects on target visibility. The most well-known properties are the luminance, contrast, and similarity of the background to the target. In previous studies, we found that these properties have highly lawful effects on detection in natural backgrounds. However, there is another important factor affecting detection in natural backgrounds that has received little or no attention in the masking literature, which has been concerned with detection in simpler backgrounds. Namely, in natural backgrounds the properties of the background often vary under the target, and hence some parts of the target are masked more than others. We began studying this factor, which we call the “partial masking factor,” by measuring detection thresholds in backgrounds of contrast-modulated white noise that was constructed so that the standard template-matching (TM) observer performs equally well whether or not the noise contrast modulates in the target region. If noise contrast is uniform in the target region, then this TM observer is the Bayesian optimal observer. However, when the noise contrast modulates then the Bayesian optimal observer weights the template at each pixel location by the estimated reliability at that location. We find that human performance for modulated noise backgrounds is predicted by this reliability-weighted TM (RTM) observer. More surprisingly, we find that human performance for natural backgrounds is also predicted by the RTM observer.


2020 ◽  
Vol 13 (10) ◽  
pp. 5237-5257
Author(s):  
Brice Barret ◽  
Emanuele Emili ◽  
Eric Le Flochmoen

Abstract. The MetOp/Infrared Atmospheric Sounding Interferometer (IASI) instruments have provided data for operational meteorology and document atmospheric composition since 2007. IASI ozone (O3) data have been used extensively to characterize the seasonal and interannual variabilities and the evolution of tropospheric O3 at the global scale. SOftware for a Fast Retrieval of IASI Data (SOFRID) is a fast retrieval algorithm that provides IASI O3 profiles for the whole IASI period. Until now, SOFRID O3 retrievals (v1.5 and v1.6) were performed with a single a priori profile, which resulted in important biases and probably a too-low variability. For the first time, we have implemented a comprehensive dynamical a priori profile for spaceborne O3 retrievals which takes the pixel location, time and tropopause height into account for SOFRID-O3 v3.5 retrievals. In the present study, we validate SOFRID-O3 v1.6 and v3.5 with electrochemical concentration cell (ECC) ozonesonde profiles from the global World Ozone and Ultraviolet Radiation Data Centre (WOUDC) database for the 2008–2017 period. Our validation is based on a thorough statistical analysis using Taylor diagrams. Furthermore, we compare our retrievals with ozonesonde profiles both smoothed by the IASI averaging kernels and raw. This methodology is essential to evaluate the inherent usefulness of the retrievals to assess O3 variability and trends. The use of a dynamical a priori profile largely improves the retrievals concerning two main aspects: (i) it corrects high biases for low-tropospheric O3 regions such as the Southern Hemisphere, and (ii) it increases the retrieved O3 variability, leading to a better agreement with ozonesonde data. Concerning upper troposphere–lower stratosphere (UTLS) and stratospheric O3, the improvements are less important and the biases are very similar for both versions. The SOFRID tropospheric ozone columns (TOCs) display no significant drifts (<2.5 %) for the Northern Hemisphere and significant negative ones (9.5 % for v1.6 and 4.3 % for v3.5) for the Southern Hemisphere. We have compared our validation results to those of the Fast Optimal Retrievals on Layers for IASI (FORLI) retrieval software from the literature for smoothed ozonesonde data only. This comparison highlights three main differences: (i) FORLI retrievals contain more theoretical information about tropospheric O3 than SOFRID; (ii) root mean square differences (RMSDs) are smaller and correlation coefficients are higher for SOFRID than for FORLI; (iii) in the Northern Hemisphere, the 2010 jump detected in FORLI TOCs is not present in SOFRID.


2020 ◽  
Vol 6 (10) ◽  
pp. 103
Author(s):  
Ali S. Awad

In this paper, a new method for the removal of Gaussian noise based on two types of prior information is described. The first type of prior information is internal, based on the similarities between the pixels in the noisy image, and the other is external, based on the index or pixel location in the image. The proposed method focuses on leveraging these two types of prior information to obtain tangible results. To this end, very similar patches are collected from the noisy image. This is done by sorting the image pixels in ascending order and then placing them in consecutive rows in a new two-dimensional image. Henceforth, a principal component analysis is applied on the patch matrix to help remove the small noisy components. Since the restored pixels are similar or close in values to those in the clean image, it is preferable to arrange them using indices similar to those of the clean pixels. Simulation experiments show that outstanding results are achieved, compared to other known methods, either in terms of image visual quality or peak signal to noise ratio. Specifically, once the proper indices are used, the proposed method achieves PSNR value better than the other well-known methods by >1.5 dB in all the simulation experiments.


Detection and tracking has become a vital chore in most of the computer vision applications. It analyzes the behavior of the object and detects when it appears in other frames. In this paper, a locality sensitive histogram (LSH) algorithm along with SVM is used to detect and track the objects. Locality Sensitive Histogram is used for feature extraction and detection. It is computed at each pixel location, by adding a floating-point value to bin, which is its unique nature. The extracted features are subjected to Linear SVM classifier and then the object is tracked by eliminating false positives. This proposed method precisely tracks and detects the object well with different challenges. Experimental results demonstrate the performance of the proposed algorithm with an accuracy of 89% considering several challenging factors. Evaluation of various other algorithms using different performance parameters is also tabulated in the diagram and shows that the proposed method is topmost performer in tracking the objects. This method can be utilized to track different objects of different scale and track efficiently.


2020 ◽  
Author(s):  
Brice Barret ◽  
Emanuele Emili ◽  
Eric Le Flochmoen

Abstract. The Metop/IASI instruments provide data for operational meteorology and document atmospheric composition since 2007. IASI Ozone (O3) data have been used extensively to characterize the seasonal and interrannual variabilities and the evolution of tropospheric O3 at the global scale. The SOFRID (SOftware for a Fast Retrieval of IASI Data) is a fast retrieval algorithm that provides IASI O3 profiles for the whole IASI period. Up to now SOFRID O3 retrievals (v1.5 and 1.6) were performed with a single a priori profile which resulted in important biases and probably a too low variability. For the first time we have implemented a dynamical a priori profile for spaceborne O3 retrievals which takes the pixel location, time and tropopause height into account for SOFRID-O3 v3.5 retrievals. In the present study we validate SOFRID-O3 v1.6 and v3.5 with ECC ozonesonde profiles from the global WOUDC database for the 2008–2017 period. Our validation is based on a thorough statistical analysis using Taylor diagrams. Furthermore we compare our retrievals with ozonesonde profiles both smoothed by the IASI averaging kernels and raw. This methodology is essential to evaluate the inherent usefulness of the retrievals to assess O3 variability and trends. The use of a dynamical a priori largely improves the retrievals concerning two main aspects: (i) it corrects high biases for low-tropospheric O3 regions such as the southern hemisphere (ii) it increases the retrieved O3 variability leading to a better agreement with ozonesonde data. Concerning UTLS and stratospheric O3 the improvements are less important and the biases are very similar for both versions. The SOFRID Tropospheric Ozone Columns (TOC) display no significant drifts (


Sign in / Sign up

Export Citation Format

Share Document