Stationary coupled cluster response: Role of cubic terms in molecular properties

1994 ◽  
Vol 106 (2) ◽  
pp. 387-392
Author(s):  
Nayana Vaval ◽  
Keya Ghose ◽  
Priya Nair ◽  
Sourav Pal
2008 ◽  
Vol 07 (04) ◽  
pp. 805-820 ◽  
Author(s):  
XIANGZHU LI ◽  
JOSEF PALDUS

The reduced multireference (RMR) coupled-cluster (CC) method with singles and doubles (RMR CCSD) that employs a modest-size MR CISD wave function as an external source for the most important (primary) triples and quadruples in order to account for the nondynamic correlation effects in the presence of quasidegeneracy, and which is further perturbatively corrected for the remaining (secondary) triples, RMR CCSD(T), is employed to compute the molecular geometry and the energy of the lowest-lying singlet and triplet states, as well as the corresponding singlet–triplet splitting, for all possible isomers of the m, n-pyridyne diradicals. A comparison is made with earlier results that were obtained by other authors, and the role of the multireference effects for both the geometry and the spin multiplicity of the lowest state, as described by the RMR-type methods, is demonstrated on the example of 2,6- and 3,5-pyridynes.


Atoms ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 62 ◽  
Author(s):  
A. Kudrin ◽  
A. Zaitsevskii ◽  
T. Isaev ◽  
D. Maison ◽  
L. Skripnikov

Molecular properties of the thallium monocyanide (Tl·CN) system in its ground electronic state are studied using high-precision ab initio relativistic two-component pseudopotential replacing 60 inner-core electrons of Tl. A relativistic coupled-cluster method with single, double and perturbative triple amplitudes is employed to account for electronic correlations. Extrapolation of results to the complete basis set limit is used for all studied properties. The global potential energy minimum of Tl·CN corresponds to the linear cyanide (TlCN) isomer, while the non-rigid isocyanide-like (TlNC) structure lies by approximately 11 kJ/mol higher in energy. The procedure of restoration of the wavefunction in the “core” region of Tl atom was applied to calculate the interaction of the Tl nuclear Schiff moment with electrons. The parameter X of the interaction of the Tl nuclear Schiff moment with electrons in the linear TlCN molecule equals 7150 a.u. The prospects of using the TlCN molecule for the experimental detection of the nuclear Schiff moment are discussed.


2010 ◽  
Vol 1263 ◽  
Author(s):  
Niranjan Govind ◽  
Roger Rousseau ◽  
Amity Andersen ◽  
Karol Kowalski

AbstractTo shed light on the nature of the electronic states at play in N-doped TiO2 nanoparticles, we have performed detailed ground and excited state calculations on pure and N-doped TiO2 rutile using an embedding model. We have validated our model by comparing ground-state embedded results with those obtained from periodic DFT calculations. Our results are consistent with periodic calculations. Using this embedding model we have performed B3LYP based TDDFT calculations of the excited state spectrum. We have also studied the lowest excitations using high-level equation-of-motion coupled cluster (EOMCC) approaches involving all single and inter-band double excitations. We compare and contrast the nature of the excitations in detail for the pure and doped systems using these calculations. Our calculations indicate a lowering of the bandgap and confirm the role of the N3- states on the UV/Vis spectrum of N-doped TiO2 rutile supported by experimental findings.


1990 ◽  
Vol 45 (8) ◽  
pp. 1041-1042 ◽  
Author(s):  
M. Zander

AbstractSome general aspects of the concept of molecular topology are delt with. The role of the separability of topological and non-topological factors that determine molecular properties, as well as the "holistic" behaviour of certain classes of compounds are discussed. A suggestion regarding a deeper understanding of the role of molecular topology is made


2009 ◽  
Vol 113 (52) ◽  
pp. 14691-14698 ◽  
Author(s):  
H. C. B. de Oliveira ◽  
F. C. Rangel ◽  
C. S. Esteves ◽  
F. M. C. Vieira ◽  
K. C. Mundim

Sign in / Sign up

Export Citation Format

Share Document