Visible-light Photoresponse of Nitrogen-doped TiO2: Excited State Studies Using Time-dependent Density Functional Theory and Equation-of-Motion Coupled Cluster Methods

2010 ◽  
Vol 1263 ◽  
Author(s):  
Niranjan Govind ◽  
Roger Rousseau ◽  
Amity Andersen ◽  
Karol Kowalski

AbstractTo shed light on the nature of the electronic states at play in N-doped TiO2 nanoparticles, we have performed detailed ground and excited state calculations on pure and N-doped TiO2 rutile using an embedding model. We have validated our model by comparing ground-state embedded results with those obtained from periodic DFT calculations. Our results are consistent with periodic calculations. Using this embedding model we have performed B3LYP based TDDFT calculations of the excited state spectrum. We have also studied the lowest excitations using high-level equation-of-motion coupled cluster (EOMCC) approaches involving all single and inter-band double excitations. We compare and contrast the nature of the excitations in detail for the pure and doped systems using these calculations. Our calculations indicate a lowering of the bandgap and confirm the role of the N3- states on the UV/Vis spectrum of N-doped TiO2 rutile supported by experimental findings.

RSC Advances ◽  
2021 ◽  
Vol 11 (30) ◽  
pp. 18246-18251
Author(s):  
Selçuk Eşsiz

A computational study of metal-free cyanomethylation and cyclization of aryl alkynoates with acetonitrile is carried out employing density functional theory and high-level coupled-cluster methods, such as [CCSD(T)].


Author(s):  
Selçuk EŞSİZ ◽  
Uğur Bozkaya

A computational study of 2,2-azobis(isobutyronitrile) (AIBN)-initiated aerobic oxidative cleavage of alkenes is carried out employing density functional theory (DFT) and high-level coupled-cluster methods, such as coupled-cluster singles and doubles with...


Chemosensors ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 128
Author(s):  
Patrícia D. Barata ◽  
José V. Prata

Two highly fluorescent calix[4]arene-containing phenylene-alt-ethynylene-carbazolylene polymers (Calix-PPE-CBZs) were used in the detection of explosives from the nitroaromatic compounds (NACs) family, in solution and in vapour phases. Both fluorophores exhibit high sensitivity and selectivity towards NACs detection. The quenching efficiencies in solution, assessed through static Stern-Volmer constants (KSV), follow the order picric acid (PA) >> 2,4,6-trinitrotoluene (TNT) > 2,4-dinitrotoluene > (2,4-DNT) > nitrobenzene (NB). These correlate very well with the NACs electron affinities, as evaluated from their lowest unoccupied molecular orbitals (LUMOs) energies, indicating a photo-induced electron transfer as the dominant mechanism in fluorescence quenching. Moreover, and most interesting, detection of TNT, 2,4-DNT and NB vapours via thin-films of Calix-PPE-CBZs revealed a remarkably sensitive response to these analytes, comparable to state-of-the-art chemosensors. The study also analyses and compares the current results to previous disclosed data on the detection of NACs by several calix[4]arene-based conjugated polymers and non-polymeric calix[4]arenes-carbazole conjugates, overall highlighting the superior role of calixarene and carbazole structural motifs in NACs’ detection performance. Density functional theory (DFT) calculations performed on polymer models were used to support some of the experimental findings.


Sign in / Sign up

Export Citation Format

Share Document