Rock mass structure analysis based on seismic velocity and attenuation images

2000 ◽  
Vol 45 (13) ◽  
pp. 1211-1216 ◽  
Author(s):  
Xu Chang ◽  
Yike Liu ◽  
Hui Wang ◽  
Xing Gao
Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1579
Author(s):  
Jie Song ◽  
Diyang Chen ◽  
Jing Wang ◽  
Yufeng Bi ◽  
Shang Liu ◽  
...  

The water inrush of the Shangjiawan karst tunnel is used to study the evolution pattern of precursor water inrush information in water-filled caves and to further reveal the matching mode of the information. The three-dimensional numerical method FLAC3D was used to simulate the evolution process of water inrush after damage to a water-blocking rock mass structure in a water-filled cave and to obtain the evolution pattern of precursor water-inrush information caused by the damage. The results show that the multifield response to the characteristic precursor information of the water-inrush pattern after the fracture of the water-blocking rock mass follows the order of stress-field displacement-field seepage-field. Further, the matching pattern of the information shows that the stress field increased first and then decreased, the displacement field always increased, and the seepage field increased first and then decreased.


Author(s):  
Jinchao Wang ◽  
Hanhua Xu ◽  
Wei Chen ◽  
Chuanying Wang ◽  
Zengqiang Han

2014 ◽  
Vol 72 (1) ◽  
Author(s):  
Seyed Vahid Alavi Nezhad Khalil Abad ◽  
Edy Tonnizam Mohamad ◽  
Ibrahim Komoo ◽  
Roohollah Kalatehjari

This paper presents an assessment of weathering effect to the rock mass structure by studying the joint characteristics of tropically weathered granite. Joint survey was performed by scanline method and the results were analyzed statistically by stereographic projection plots. The overall trend of mean joint spacing followed a sharp decrement from fresh to moderately weathered zone and then a slight increment to highly and completely weathered zones, whereas the overall trend of mean joint trace length showed a gradual decrement over progress of weathering. In addition, the degree of joints inclination and weathering zones revealed an increasing trend in the percentage of horizontal joints from fresh to completely weathered rocks, while no specific relation was found between the numbers of major joint set and different weathering zones. The results of this study may contribute to understanding the behavior and better classification of weathered granitic rock mass as a heterogeneous mass in engineering works.


1999 ◽  
pp. 48-86
Author(s):  
B. H. G. Brady ◽  
E. T. Brown

Author(s):  
Chai Bo ◽  
Yin Kunlong ◽  
Du Juan ◽  
Dai Yunxia ◽  
Miao Haibo

Author(s):  
Daming Lin ◽  
Feng Lou ◽  
Renmao Yuan ◽  
Yanjun Shang ◽  
Yun Zhao ◽  
...  

Geophysics ◽  
1993 ◽  
Vol 58 (12) ◽  
pp. 1748-1763 ◽  
Author(s):  
R. G. Pratt ◽  
W. J. McGaughey ◽  
C. H. Chapman

Cross‐borehole data were acquired in the surface crown pillar of a massive sulfide ore mine. The data consist of five, two‐dimensional (2-D), cross‐borehole panels, each with approximately 900 source‐receiver pairs. The panels were located within the crown pillar at either side of and within a major subvertical fault zone that intersects the orebody. An initial analysis of the data indicates that the bedrock containing the orebody is seismically anisotropic. A rigorous analysis of the traveltimes using anisotropic velocity tomography confirms the initial assessment that anisotropy exists within the crown pillar rock mass. Anisotropic velocity tomography is the generalization of tomographic methods to anisotropic media. As in any geophysical problem, the data are insufficient to completely resolve the distributions of the rock properties at all scale lengths; we use external constraints on the roughness of the final solution to ensure an algebraically well‐posed problem. Plots of the data residuals (the “traveltime surfaces”) are an essential tool in determining an optimal level of constraint. Of equal importance are plots of the relationship between the solution roughness and the rms level of the residuals. The final results of anisotropic velocity tomography are a set of images (tomograms) of the velocity and selected anisotropy parameters for the five panels. Our images do not contain the distortions typically exhibited when using isotropic tomography in anisotropic media. The velocity tomograms clearly show the geometry of the overburden contact at the top of the bedrock. The anisotropy tomograms show a decrease in anisotropy with depth on two of the panels. They also show a decrease in anisotropy with proximity to the fault zone. These features of the seismic velocity anisotropy are consistent with observations of fracture orientation and distribution. The results of the crosshole data interpretation contribute to the overall site investigation and provide a reliable interrogation of the bulk properties of the rock mass.


Sign in / Sign up

Export Citation Format

Share Document