Uniform propagation of a shock wave due to an explosion at the boundary of a half-space containing a perfect gas

1973 ◽  
Vol 15 (1) ◽  
pp. 33-44
Author(s):  
P. Singh
Keyword(s):  
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
J. P. Vishwakarma ◽  
G. Nath

Nonsimilar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamic cylindrical shock wave propagating in a rotating or nonrotating perfect gas in presence of a constant azimuthal magnetic field. The density of the gas is assumed to be varying and obeying an exponential law. In order to obtain the solutions, the angular velocity of the ambient medium is assumed to be decreasing exponentially as the distance from the axis increases. The shock wave moves with variable velocity and the total energy of the wave is nonconstant. The effects of variation of Alfven-Mach number and time are obtained. Also, a comparison between the solutions in the cases of rotating and non-rotating media with or without magnetic field is made.


A polytropic gas of adiabatic exponent 5/3 fills the half-space on one side of a rigid plane wall of infinite extent. Initially the gas is at rest and its density is proportional to x 3/2 , where x is the distance from the wall. The gas starts moving towards the wall. It is shown that, although the data are continuous, the problem has no continuous solution, that reflexion at the wall generates a shock wave. The problem is solved completely without recourse to numerical integration.


1975 ◽  
Vol 14 (3) ◽  
pp. 455-465
Author(s):  
N. Asano

Steady magnetohydrodynamic combustion waves for a perfectly conducting, electrically neutral perfect gas in an aligned field are examined in phase space, taking into account the effects of viscosity and the thermal conduction as transport processes. Steady defiagration does not exist. Conditions to be satisfied by the initial and final states of detonation waves are derived, which may include an extension of the evolutionarity condition and the Taniuti—Resler relation to shock waves with finite width and energy release. A constraint on the shock wave is given in a conservation form. The exact solution of the final state is also given in such a way that it depends linearly on the energy supply, and may be classified completely by means of the parameters of the solution itself.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
G. Nath

Abstract The approximate analytical solutions are obtained for adiabatic and isothermal flows behind a cylindrical shock wave in a dusty gas. A mixture of perfect gas and micro size small inert solid particles is taken as the dusty gas. The inert solid particles are distributed continuously in the mixture. It is considered that the equilibrium flow conditions are maintained. The flow variables are expanded in power series to obtain the solution of the problem. The analytical solutions are obtained for the first order approximation in both the adiabatic and isothermal cases. Also, the system of ordinary differential equations for second order approximations to the solution is obtained. The influence of an increase in the ratio of the density of the inert solid particles to the initial density of the perfect gas, the rotational parameter and the mass concentration of inert solid particles in the mixture are discussed on the flow variables for first approximation. Our first approximation to the solution corresponds to the Taylor’s solution for the creation of a blast wave by a strong explosion. A comparison is also made between the solutions for isothermal and adiabatic flows. It is investigated that the density and pressure near the line of symmetry in the case of isothermal flow become zero and hence a vacuum is formed at the axis of symmetry when the flow is isothermal. Also, it is found that an increase in the value of rotational parameter or the mass concentration of solid particles in the mixture has a decaying effect on shock wave. The present work may be used to verify the correctness of the solution obtained by self-similarity and numerical methods.


Author(s):  
M. V. Chernyshov ◽  
A. S. Kapralova

The article studies triple configurations of shock waves in supersonic flows of a perfect gas in view of the fact that it is not always possible to determine unambiguously the parameters of the remaining shocks in the configuration by specifying the properties of the oncoming flow and the branching shock wave. The values of the parameters of triple configurations with maximum relations of the parameters of the flow on the sides of the outgoing tangential discontinuity (extremal configurations) in conditions of the ambiguity of the physically realizable solution are found analytically and numerically.


Sign in / Sign up

Export Citation Format

Share Document