Magnetohydrodynamic combustion waves in aligned fields

1975 ◽  
Vol 14 (3) ◽  
pp. 455-465
Author(s):  
N. Asano

Steady magnetohydrodynamic combustion waves for a perfectly conducting, electrically neutral perfect gas in an aligned field are examined in phase space, taking into account the effects of viscosity and the thermal conduction as transport processes. Steady defiagration does not exist. Conditions to be satisfied by the initial and final states of detonation waves are derived, which may include an extension of the evolutionarity condition and the Taniuti—Resler relation to shock waves with finite width and energy release. A constraint on the shock wave is given in a conservation form. The exact solution of the final state is also given in such a way that it depends linearly on the energy supply, and may be classified completely by means of the parameters of the solution itself.

2005 ◽  
Vol 16 (01) ◽  
pp. 177-190 ◽  
Author(s):  
MINGFENG HE ◽  
QIU-HUI PAN ◽  
SHUANG WANG

This paper describes a cellular automata model containing movable wolves, sheep and reproducible grass. Each wolf or sheep is characterized by Penna bitstrings. In addition, we introduce the energy rule and the predator–prey mechanism for wolf and sheep. With considering age-structured, genetic strings, minimum reproduction age, cycle of the reproduction, number of offspring, we get three possible states of a predator–prey system: the coexisting one with predators and prey, the absorbing one with prey only, and the empty one where no animal survived. In this paper, we mainly discuss the effect of the number of poor genes, the energy supply (food), the minimum reproduction age, the reproductive cycle and the birth rate on the above three possible final states.


2014 ◽  
Vol 35 ◽  
pp. 1460440
Author(s):  
ALBERTO LUSIANI

We report recent measurements on τ leptons obtained by the BABAR collaboration using the entire recorded sample of electron-positron collisions at and around the Υ(4S) (about 470fb-1). The events were recorded at the PEP-II asymmetric collider at the SLAC National Accelerator Laboratory. The measurements include high multiplicity τ decay branching fractions with 3 or 5 charged particles in the final state, a search for the second class current the τ decay τ → πη′ν, τ branching fractions into final states containing two KS mesons, [Formula: see text], with h = π, K, and preliminary measurements of hadronic spectra of τ decays with three hadrons (τ- → h-h+h-ντ decays, where h = π, K). The results improve the experimental knowledge of the τ lepton properties and can be used to improve the precision tests of the Standard Model.


2001 ◽  
Vol 16 (supp01b) ◽  
pp. 888-890
Author(s):  
◽  
BRUCE KNUTESON

We present a quasi-model-independent search for physics beyond the standard model. We define final states to be studied, and construct a rule that identifies a set of variables appropriate for any particular final state. A new algorithm ("Sleuth") searches for regions of excess in the space of those variables and quantifies the significance of any detected excess. After demonstrating the sensititvity of the method, we apply it to the semi-inclusive channel eμX collected in ≈108 pb -1 of [Formula: see text] collisions at [Formula: see text] at the DØ experiment at the Fermilab Tevatron. We find no evidence of new high pT physics in this sample.


1986 ◽  
Vol 39 (5) ◽  
pp. 587 ◽  
Author(s):  
IE McCarthy

For sufficiently high electron energies (greater than a few hundred eV) and sufficiently low recoil momenta Oess than a few atomic units) the differential cross section for the non-coplanar symmetric (e,2e) reaction on an atom or molecule depends on the target and ion structure only through the target-ion overlap. Experimental criteria for the energy and momentum are that the apparent structure information does not change when the energy and momentum are varied. The plane-wave impulse approximation is a sufficient description of the reaction mechanism for determining spherically averaged squares of momentum-space orbitals for atoms and molecules and for coefficients describing initial- and final-state correlations. For mainly uncorrelated initial states, spectroscopic factors for final states belonging to the same manifold are uniquely determined. For molecules, summed spectroscopic factors can be compared for different ion manifolds. For atoms, summed spectroscopic factors and higher-momentum profiles require the dist~rted-wave impulse approximation.


1994 ◽  
Vol 26 (03) ◽  
pp. 671-689
Author(s):  
Steven M. Butler

This paper describes the early and final properties of a general S–I–R epidemic process in which the infectives behave independently, each infective has a random number of contacts with the others in the population, and individuals vary in their susceptibility to infection. For the case of a large initial number of susceptibles and a small (finite) initial number of infectives, we derive the threshold behavior and the limiting distribution for the final state of the epidemic. Also, we show strong convergence of the epidemic process over any finite time interval to a birth and death process, extending the results of Ball (1983). These complement some results due to Butler (1994), who considers the case of a large initial number of infectives.


2020 ◽  
pp. 2141007
Author(s):  
Malte Mrowietz ◽  
Sam Bein ◽  
Jory Sonneveld

We present the MadAnalysis 5 implementation and validation of the analysis Search for supersymmetry in proton-proton collisions at 13 TeV in final states with jets and missing transverse momentum (CMS-SUS-19-006). The search targets signatures with at least two jets and large missing transverse momentum in the all-hadronic final state. The analyzed luminosity is 137 fb[Formula: see text], corresponding to the Run 2 proton-proton data set recorded by the CMS detector at 13 TeV. This implementation has been validated in a variety of simplified models, by comparing derived cut flow tables and histograms with information provided by the CMS collaboration, using event samples that we simulated for the purpose of this re-implementation study. The validation is found to reproduce the signal acceptance in most cases.


1984 ◽  
Vol 86 ◽  
pp. 128-131
Author(s):  
J.M. Bizau ◽  
F. Wuilleumier ◽  
P. Gerard ◽  
P. Dhez ◽  
B. Carré ◽  
...  

We have begun a program to measure oscillator strengths of autoionizing resonances that result from a transition in the VUV between a laser excited initial state and a final state in which a core electron is promoted. These measurements demonstrate a new technique to combine synchrotron radiation, laser pumping, and photoelectron spectroscopy.Measurements of the energy positions of autoionizing resonances have been honed to a fine art over the past 50 years. Total cross section measurements and the parameters that describe autoionizing resonances have been determined. Most of these studies have been made from the dipole allowed ground state. Recently autoionizing resonances have been observed from excited initial states and from ion initial states. We have heard several talks, at this meeting which described some of this type of research. In the measurements to be described in this paper, laser radiation is combined with synchrotron radiation, as shown schematicaly in Figure 1, to study the photoionization from excited initial states to continuum final states or to autoionizing final states. Continuum radiation from the Aneau de Collisions d’Orsay (ACO), which is installed at the Universite de Paris-Sud, in Orsay France, is monochromatized by a toroidal grating monochromator (TGM) and is focused by a toroidal output mirror on to a weakly collimated sodium beam emanating from a furnace mounted on the axis of a cylinderical mirror analyzer (CMA). This electron spectrometer is used to study the kinetic energy distribution of the ejected photoelectrons produced by the interaction of the photon beam with the focused synchrotron radiation.


Sign in / Sign up

Export Citation Format

Share Document