A study on the comparative effect of chemicals on chromosomes of roots, pollen mother cells and pollen grains

Author(s):  
Arun Kumar Sharma ◽  
Santosh Kumar Sarkar
2021 ◽  
Author(s):  
◽  
Frederick Bruce Sampson

<p>The inflorescences, flowers and the vascularization of floral parts of Hedycarya arborea and Laurelia novae-zelandiae were described and comparisons made with other members of the family in an attempt to determine the basic types of inflorescences, flowers and floral vascularization in the family. The vegetative, inflorescence and floral meristems of the two genera were compared. It was concluded that the vegetative apices of both had the tunica-corpus configuration typical of many other woody Ranales and other orders. The inflorescence apices were quite similar to the vegetative ones. The young floral apices are in a state of transition from a tunica-corpus to a mantle-core configuration and older floral apices had the mantle-core configuration, which is typical of the floral apices of many woody Ranales. Unusual features of the floral apices of Hedycarya and Laurelia were the lack of a pronounced rib meristem and the occurrence of relatively frequent divisions within vacuolate cells of the core. The ontogeny of the stamens of Hedycarya and Laurelia was described and comparisons were made. In both genera the micro-sporangium developed in a similar fashions: in Hedycarya 5-6 wall layers are formed inside the epidermis; in Laurelia there are 3-5 layers. Both genera had a typically thickened endothecium and a tapetum of the secretory type in which the tapetal cells become binucleate during the first meiotic division of the pollen mother cells. In Hedycarya the meiotic divisions of the pollen mother cells are of the successive type in which walls form by means of centrifugal cell plates Pollen grains remain in permanent tetrads in this genus. In Laurelia wall formation at the end of meiosis is of a modified simultaneous type, which may not have been hitherto described in the literature. Pollen grains are not in permanent tetrads. When the first division occurs in each microspore in Hedycarya, all four cells of a tetrad are at the same stage of division and the generative cell is cut off towards the distal face of the grain. Each microspore is in the two celled condition when shed. It was deduced that the generative cell is cut off against what represents a radial wall of the grain (with reference to the tetrad stage) in Laurelia. Pollen is shed in either the two or three celled condition. Comparisons were made with the development of microsporangia and male gametophytes in other woody Ranales. A study was made of the ontogeny, structure and function of the staminal appendages of Laurelia. It was found that the appendages function as nectaries, the nectar being predominantly sucrose. After a discussion of the various theories as to the morphological nature of the staminal appendages of the Laurales, it was concluded that they are morphologically staminodes. The carpels of Hedycarya and Laurelia have a basically similar ontogeny in which, as in the Lauraceae, the terminal stigmatic region develops from a solid terminal meristem in contrast to many woody Ranales in which the stigma-consists of crests which surround the external part of the cleft of the carpel. The ovules of Hedycarya and Laurelia resemble those of most other woody Ranales in being bitegmic, crassinucellate and anatropous with a monosporic 8-nucleate embryo sac of the Polygonum type. Both linear and T-shaped megaspore tetrads were found in the two genera. Laurelia has pseudocarps which develop after anthesis and enclose plumose achenes, but in Hedycarya the fruits are drupes. It was concluded that Laurelia and Hedycarya belong to two subfamilies which have been separated from each other for a long time and have undergone considerable evolution in different directions. It was also concluded that the Monimiaceae are closely related to the Lauraceae.</p>


2017 ◽  
Vol 9 (2) ◽  
pp. 287-295
Author(s):  
Aslihan ÇETİNBAŞ-GENÇ ◽  
Meral ÜNAL

Flower development of protandrous species Malva sylvestris L. was divided into 12 stages, as revealed by applying histological and scanning electron microscope techniques. Flower development started with the conversion of apical meristem into floral meristem. Initiation of male organ primordia started before that of female organ. Five rounded structures called corolla/androecium units differentiated from floral meristem, on which stamen primordia emerged. When pollen mother cells exist in the pollen sacs, initiation of carpels starts from floral meristem. Concurrent with the termination of meiosis in pollen mother cells, ten loculed ovary comed in view. Simultaneously with the occurrence of vacuoleted pollen grains, megaspore mother cell becomes visible in the nucellar tissue. Concominant with the existence of two celled-pollen grains, the style was formed and ovule becomes anatropous. When pollen grains are shed in male phase, ten branched stigma appeared on the upper part of the style, but receptive surface was not fully formed to accept pollen grains. Female phase is characterized by the opening of stigmatic branches with papillate receptive surface. Timing of reproductive organs maturity overlapped for a while, thus, the reproductive stragey of M. sylvestris was incomplete proterandry. 


2011 ◽  
Vol 11 (1) ◽  
pp. 27-36 ◽  
Author(s):  
Denise Olkoski ◽  
Maria Teresa Schifino Wittmann

Chromosome numbers (somatic and/or gametic) were determined in 50 populations of M. bimucronata (DC.) O. Kuntze collected in the species area of distribution in Rio Grande do Sul, south Brazil. All populations were diploid (2n = 2x = 26, n = 13). Polysomatic (mostly tetraploid) cells were detected in the seedlings root-tip cells in 39 out of the 41 populations examined, ranging from 3.0 to 28.2 % among populations, but were absent in the root-tips of grown plants. Polysomaty was as well absent in pollen-mother cells. In M. bimucronata pollen-mother cells are joined two-by-two before the onset of meiosis, remaining attached during all the meiotic division until the formation of pollen grain polyads, composed of two sets of four pollen grains each, that are dispersed in this way, which, according to previous suggestions would be an adaptation to ensure high seed set after a single pollination event.


2021 ◽  
Author(s):  
◽  
Frederick Bruce Sampson

<p>The inflorescences, flowers and the vascularization of floral parts of Hedycarya arborea and Laurelia novae-zelandiae were described and comparisons made with other members of the family in an attempt to determine the basic types of inflorescences, flowers and floral vascularization in the family. The vegetative, inflorescence and floral meristems of the two genera were compared. It was concluded that the vegetative apices of both had the tunica-corpus configuration typical of many other woody Ranales and other orders. The inflorescence apices were quite similar to the vegetative ones. The young floral apices are in a state of transition from a tunica-corpus to a mantle-core configuration and older floral apices had the mantle-core configuration, which is typical of the floral apices of many woody Ranales. Unusual features of the floral apices of Hedycarya and Laurelia were the lack of a pronounced rib meristem and the occurrence of relatively frequent divisions within vacuolate cells of the core. The ontogeny of the stamens of Hedycarya and Laurelia was described and comparisons were made. In both genera the micro-sporangium developed in a similar fashions: in Hedycarya 5-6 wall layers are formed inside the epidermis; in Laurelia there are 3-5 layers. Both genera had a typically thickened endothecium and a tapetum of the secretory type in which the tapetal cells become binucleate during the first meiotic division of the pollen mother cells. In Hedycarya the meiotic divisions of the pollen mother cells are of the successive type in which walls form by means of centrifugal cell plates Pollen grains remain in permanent tetrads in this genus. In Laurelia wall formation at the end of meiosis is of a modified simultaneous type, which may not have been hitherto described in the literature. Pollen grains are not in permanent tetrads. When the first division occurs in each microspore in Hedycarya, all four cells of a tetrad are at the same stage of division and the generative cell is cut off towards the distal face of the grain. Each microspore is in the two celled condition when shed. It was deduced that the generative cell is cut off against what represents a radial wall of the grain (with reference to the tetrad stage) in Laurelia. Pollen is shed in either the two or three celled condition. Comparisons were made with the development of microsporangia and male gametophytes in other woody Ranales. A study was made of the ontogeny, structure and function of the staminal appendages of Laurelia. It was found that the appendages function as nectaries, the nectar being predominantly sucrose. After a discussion of the various theories as to the morphological nature of the staminal appendages of the Laurales, it was concluded that they are morphologically staminodes. The carpels of Hedycarya and Laurelia have a basically similar ontogeny in which, as in the Lauraceae, the terminal stigmatic region develops from a solid terminal meristem in contrast to many woody Ranales in which the stigma-consists of crests which surround the external part of the cleft of the carpel. The ovules of Hedycarya and Laurelia resemble those of most other woody Ranales in being bitegmic, crassinucellate and anatropous with a monosporic 8-nucleate embryo sac of the Polygonum type. Both linear and T-shaped megaspore tetrads were found in the two genera. Laurelia has pseudocarps which develop after anthesis and enclose plumose achenes, but in Hedycarya the fruits are drupes. It was concluded that Laurelia and Hedycarya belong to two subfamilies which have been separated from each other for a long time and have undergone considerable evolution in different directions. It was also concluded that the Monimiaceae are closely related to the Lauraceae.</p>


Genome ◽  
1987 ◽  
Vol 29 (3) ◽  
pp. 419-424 ◽  
Author(s):  
V. Lein ◽  
T. Lelley

Six genetically different inbred genotypes of spring-type rye Secale cereale with differences in the average number and in the positional distribution of chiasmata were used in this study. The line with the lowest chiasma frequency was chosen as the female parent and crossed with the other five lines. Parental, F1, and F2 data were collected on chiasma number and on chiasma distribution between and within bivalents. Evidence for a polygenic control of both phenomena was found. Chiasma distribution between bivalents within pollen mother cells obviously follows a binomial distribution. This is effected by a mechanism that prevents the formation of a second chiasma on a chromosome arm as long as chromosome arms without chiasma remain; i.e., with 14 chiasmata seven ring bivalents will generally be formed. This mechanism causes a very strong negative correlation between frequency and between-cell variance of chiasmata. The number of chiasmata is independent of their position within the bivalents. A very close correlation between the number of pollen mother cells without univalents and the number of fertile pollen grains was found. Key words: inbred rye, genetic control, chiasma frequency, chiasma distribution, heterosis.


The Nucleus ◽  
2021 ◽  
Author(s):  
Fajarudin Ahmad ◽  
Yuyu S. Poerba ◽  
Gert H. J. Kema ◽  
Hans de Jong

AbstractBreeding of banana is hampered by its genetic complexity, structural chromosome rearrangements and different ploidy levels. Various scientific disciplines, including cytogenetics, linkage mapping, and bioinformatics, are helpful tools in characterising cultivars and wild relatives used in crossing programs. Chromosome analysis still plays a pivotal role in studying hybrid sterility and structural and numerical variants. In this study, we describe the optimisation of the chromosome spreading protocol of pollen mother cells focusing on the effects of standard fixation methods, duration of the pectolytic enzyme treatment and advantages of fluorescence microscopy of DAPI stained cell spreads. We demonstrate the benefits of this protocol on meiotic features of five wild diploid Musa acuminata bananas and a diploid (AA) cultivar banana “Rejang”, with particular attention on pairing configurations and chromosome transmission that may be indicative for translocations and inversions. Pollen slides demonstrate regular-shaped spores except “Rejang”, which shows fertile pollen grains of different size and sterile pollen grains, suggesting partial sterility and unreduced gamete formation that likely resulted from restitutional meiotic divisions.


Caryologia ◽  
2003 ◽  
Vol 56 (3) ◽  
pp. 275-279 ◽  
Author(s):  
Wei Li ◽  
Jun Yang ◽  
You-Fu Pan ◽  
Guang-Qin Guo ◽  
Guo-Chang Zheng

Sign in / Sign up

Export Citation Format

Share Document