male meiosis
Recently Published Documents


TOTAL DOCUMENTS

469
(FIVE YEARS 94)

H-INDEX

45
(FIVE YEARS 4)

Author(s):  
Peng Cheng ◽  
Shengjie Bao ◽  
Chengxiang Li ◽  
Jianhua Tong ◽  
Lisha Shen ◽  
...  

2021 ◽  
Author(s):  
Thomas Rubin ◽  
Nicolas Macaisne ◽  
Ana Maria Valles ◽  
Clara Guilleman ◽  
Isabelle Gaugue ◽  
...  

In the early stages of meiosis, maternal and paternal chromosomes pair with their homologous partner and recombine to ensure exchange of genetic information and proper segregation. These events can vary drastically between species and between males and females of the same species. In Drosophila, in contrast to females, males do not form synaptonemal complexes (SCs), do not recombine and have no crossing-over; yet, males are able to segregate their chromosomes properly. Here, we investigated the early steps of homologues pairing in Drosophila males. We found that homologues are not paired in germline stem cells (GSCs) and become paired in the mitotic region before meiotic entry, similarly to females. Surprisingly, male germline cells express SC proteins, which localize to centromeres and promote pairing. We further found that the SUN/KASH (LINC) complex and microtubules are required for homologues pairing as in females. Chromosome movements are however much slower than in females and we demonstrate that this slow dynamic is compensated in males by having longer cell cycles. In agreement, slowing down cell cycles was sufficient to rescue pairing-defective mutants in female meiosis. Our results demonstrate that although meiosis differs significantly between males and females, sex-specific cell cycle kinetics are integrated with similar molecular mechanisms to achieve proper homologues pairing.


Cell Reports ◽  
2021 ◽  
Vol 37 (11) ◽  
pp. 110110
Author(s):  
Rong Liu ◽  
Seth D. Kasowitz ◽  
David Homolka ◽  
N. Adrian Leu ◽  
Jordan T. Shaked ◽  
...  
Keyword(s):  

Caryologia ◽  
2021 ◽  
Author(s):  
Harshita Dwivedi

Unreduced gametes are the key source for the natural polyploidization in plants, but process of its formation is very low in nature. Meiotic mutants are second source for the formation of 2n pollen. In this cytological investigation, the meiotic aberrations and its impact on post-meiotic products were analysed in autotetraploid Trachyspermum ammi (L.) Sprague (4n=36). The seedlings of T. ammi (L.) Sprague were treated with 3 different concentrations of colchicine (0.2, 0.4 and 0.5%, w/v) for 3 different durations. Six polyploid plants were induced which was confirmed on the basis of cytological analysis. Colchicine, an anti-microtubular drug induced different meiotic and post-meiotic abnormalities such as chromosomal bridges, lagging chromosomes, scattering, precocious, fragments, dyads, triads, and polyads. The formation of several abnormal sporads clearly signifies the meiotic restitution. The tendency of univalents to scattered in the cytoplasm at metaphase was identified as a peculiar aberration asynapsis. Pollen variability and fusion of pollen walls was reported and pollen fertility was calculated. The morphological analysis of the pollen allowed us to confirm the occurrence of 2n pollen.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1892
Author(s):  
Caitlin Castaneda ◽  
Agustin J. Ruiz ◽  
Ahmed Tibary ◽  
Terje Raudsepp

We present a detailed molecular cytogenetic analysis of a reciprocal translocation between horse (ECA) chromosomes Y and 13 in a Friesian stallion with complete meiotic arrest and azoospermia. We use dual-color fluorescence in situ hybridization with select ECAY and ECA13 markers and show that the translocation breakpoint in ECAY is in the multicopy region and in ECA13, at the centromere. One resulting derivative chromosome, Y;13p, comprises of ECAY heterochromatin (ETSTY7 array), a small single copy and partial Y multicopy region, and ECA13p. Another derivative chromosome 13q;Y comprises of ECA13q and most of the single copy ECAY, the pseudoautosomal region and a small part of the Y multicopy region. A copy number (CN) analysis of select ECAY multicopy genes shows that the Friesian stallion has significantly (p < 0.05) reduced CNs of TSPY, ETSTY1, and ETSTY5, suggesting that the translocation may not be completely balanced, and genetic material is lost. We discuss likely meiotic behavior of abnormal chromosomes and theorize about the possible effect of the aberration on Y regulation and the progression of meiosis. The study adds a unique case to equine clinical cytogenetics and contributes to understanding the role of the Y chromosome in male meiosis.


Development ◽  
2021 ◽  
Author(s):  
Jessica E. M. Dunleavy ◽  
Anne E. O'Connor ◽  
Hidenobu Okuda ◽  
D. Jo Merriner ◽  
Moira K. O'Bryan

Katanin microtubule severing enzymes are critical executers of microtubule regulation. Here, we have created an allelic loss-of-function series of katanin regulatory B-subunit KATNB1 in mice. We reveal KATNB1 is the master regulator of all katanin enzymatic A-subunits during mammalian spermatogenesis, wherein it is required to maintain katanin A-subunit abundance. Our data shows complete loss of KATNB1 from germ cells is incompatible with sperm production, and we reveal multiple new spermatogenesis functions for KATNB1, including critical roles in male meiosis, in acrosome formation, in sperm tail assembly, in regulating both the Sertoli and germ cell cytoskeletons during sperm nuclear remodelling and in maintaining seminiferous epithelium integrity. Collectively, our findings reveal that katanins are able to differentially regulate almost all key microtubule-based structures during mammalian male germ cell development, through the complexing of one master controller, KATNB1, with a ‘toolbox’ of neofunctionalized katanin A-subunits.


Author(s):  
Cecilia Oliver ◽  
German Martinez

AbstractMeiosis is a specialized cell division that is key for reproduction and genetic diversity in sexually reproducing plants. Recently, different RNA silencing pathways have been proposed to carry a specific activity during meiosis, but the pathways involved during this process remain unclear. Here, we explored the subcellular localization of different ARGONAUTE (AGO) proteins, the main effectors of RNA silencing, during male meiosis in Arabidopsis thaliana using immunolocalizations with commercially available antibodies. We detected the presence of AGO proteins associated with posttranscriptional gene silencing (AGO1, 2, and 5) in the cytoplasm and the nucleus, while AGOs associated with transcriptional gene silencing (AGO4 and 9) localized exclusively in the nucleus. These results indicate that the localization of different AGOs correlates with their predicted roles at the transcriptional and posttranscriptional levels and provide an overview of their timing and potential role during meiosis.


Genes ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1844
Author(s):  
Alberto Viera ◽  
María Teresa Parra ◽  
Sara Arévalo ◽  
Carlos García de la Vega ◽  
Juan Luis Santos ◽  
...  

Regulation of transcriptional activity during meiosis depends on the interrelated processes of recombination and synapsis. In eutherian mammal spermatocytes, transcription levels change during prophase-I, being low at the onset of meiosis but highly increased from pachytene up to the end of diplotene. However, X and Y chromosomes, which usually present unsynapsed regions throughout prophase-I in male meiosis, undergo a specific pattern of transcriptional inactivation. The interdependence of synapsis and transcription has mainly been studied in mammals, basically in mouse, but our knowledge in other unrelated phylogenetically species is more limited. To gain new insights on this issue, here we analyzed the relationship between synapsis and transcription in spermatocytes of the grasshopper Eyprepocnemis plorans. Autosomal chromosomes of this species achieve complete synapsis; however, the single X sex chromosome remains always unsynapsed and behaves as a univalent. We studied transcription in meiosis by immunolabeling with RNA polymerase II phosphorylated at serine 2 and found that whereas autosomes are active from leptotene up to diakinesis, the X chromosome is inactive throughout meiosis. This inactivation is accompanied by the accumulation of, at least, two repressive epigenetic modifications: H3 methylated at lysine 9 and H2AX phosphorylated at serine 139. Furthermore, we identified that X chromosome inactivation occurs in premeiotic spermatogonia. Overall, our results indicate: (i) transcription regulation in E. plorans spermatogenesis differs from the canonical pattern found in mammals and (ii) X chromosome inactivation is likely preceded by a process of heterochromatinization before the initiation of meiosis.


2021 ◽  
Author(s):  
Kei-ichiro Ishiguro ◽  
Tanno Nobuhiro ◽  
Kazumasa Takemoto ◽  
Yuki Horisawa-Takada ◽  
Ryuki Shimada ◽  
...  

Meiotic prophase is a prolonged G2 phase that ensures the completion of numerous meiosis-specific chromosome events. During meiotic prophase, homologous chromosomes undergo synapsis to facilitate meiotic recombination yielding crossovers. It remains largely elusive how homolog synapsis is temporally maintained and destabilized during meiotic prophase. Here we show that FBXO47 is the stabilizer of synaptonemal complex during male meiotic prophase. Disruption of FBXO47 shows severe impact on homologous chromosome synapsis and DSB repair processes, leading to male infertility. Notably, in the absence of FBXO47, although once homologous chromosomes are synapsed, the synaptonemal complex is precociously disassembled before progressing beyond pachytene. Remarkably, Fbxo47 KO spermatocytes remain in earlier stage of meiotic prophase and lack crossovers, despite apparently exhibiting diplotene-like chromosome morphology. We propose that FBXO47 functions independently of SCF E3 ligase, and plays a crucial role in preventing synaptonemal complex from premature disassembly during cell cycle progression of meiotic prophase.


2021 ◽  
Author(s):  
Xianwen Ji ◽  
Cilia Lelivelt ◽  
Erik Wijnker ◽  
Hans de Jong

Abstract Aneuploid cauliflower plants (Brassica oleracea L. var. botrytis) display abnormal curd phenotypes causing serious commercial problems in offspring populations. Despite extensive breeding efforts, selection of genotypes producing euploid gametes remains unsuccessful due to unknown genetic and environmental factors. To reveal the origin of aneuploid gametes, we analyzed chromosome pairing, chiasma formation and chromosome segregation in pollen mother cells of selected cauliflower genotypes. To this end we compared different genotypes exhibiting Low with < 5%, Moderate with 5-10% and High with > 10% aberrant offspring. Microscopic observations revealed regular chromosome pairing at pachytene. However, cells at diakinesis and metaphase I showed variable numbers of univalents, suggesting that chiasma formation during meiotic prophase is incomplete or disrupted and results in a partial desynaptic phenotype. Cells at anaphase I – telophase II exhibited various degrees of unbalanced chromosome numbers explaining the aneuploid offspring. Immunofluorescence probed with an MLH1 antibody demonstrated fluorescent foci in all genotypes, but their lower numbers do not correspond to the putative sites of chiasmata. Interchromosomal connections between chromosomes and bivalents are common at diakinesis and metaphase I, and they contain centromeric and 45S rDNA tandem repeats, but such threads seemed not to affect proper disjoin of the half bivalents at anaphase I. Moreover, male meiosis in the arabidopsis APETALA1/ CAULIFLOWER double mutant with the typical cauliflower phenotype did show interchromosomal connections, but there were no indications for partial desynapsis. We now hypothesize that the occurrence of desynapsis in cauliflower is a developmental out-of-phase phenomenon partially or completely controlled by genes involved in flower and curd development.


Sign in / Sign up

Export Citation Format

Share Document