A stable, convergent, conservative and linear finite difference scheme for the Cahn-Hilliard equation

2003 ◽  
Vol 20 (1) ◽  
pp. 65-85 ◽  
Author(s):  
Daisuke Furihata ◽  
Takayasu Matsuo
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Jaemin Shin ◽  
Yongho Choi ◽  
Junseok Kim

In this study, we apply a finite difference scheme to solve the Cahn–Hilliard equation with generalized mobilities in complex geometries. This method is conservative and unconditionally gradient stable for all positive variable mobility functions and complex geometries. Herein, we present some numerical experiments to demonstrate the performance of this method. In particular, using the fact that variable mobility changes the growth rate of the phases, we employ space-dependent mobility to design a cylindrical biomedical scaffold with controlled porosity and pore size.


2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.


Sign in / Sign up

Export Citation Format

Share Document