scholarly journals The convergence of a numerical method for total variation flow

2021 ◽  
Vol 15 ◽  
pp. 174830262110113
Author(s):  
Qianying Hong ◽  
Ming-jun Lai ◽  
Jingyue Wang

We present a convergence analysis for a finite difference scheme for the time dependent partial different equation called gradient flow associated with the Rudin-Osher-Fetami model. We devise an iterative algorithm to compute the solution of the finite difference scheme and prove the convergence of the iterative algorithm. Finally computational experiments are shown to demonstrate the convergence of the finite difference scheme.

2013 ◽  
Vol 10 (02) ◽  
pp. 1341010 ◽  
Author(s):  
TONGSONG JIANG ◽  
ZHAOLIN JIANG ◽  
JOSEPH KOLIBAL

This paper proposes a new numerical method to solve the 1D time-dependent Schrödinger equations based on the finite difference scheme by means of multiquadrics (MQ) and inverse multiquadrics (IMQ) radial basis functions. The numerical examples are given to confirm the good accuracy of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document