A numerical study of flow distribution effect on a parallel flow heat exchanger

2001 ◽  
Vol 15 (11) ◽  
pp. 1563-1571 ◽  
Author(s):  
Kilyoan Chung ◽  
Kwan-Soo Lee ◽  
Dong-Jin Cha
2014 ◽  
Vol 1008-1009 ◽  
pp. 927-933
Author(s):  
Hai Jiang Yang ◽  
Ming Li ◽  
Xiao Ye Xue ◽  
Yan Liu ◽  
Kui Huang

In this paper, the heat transfer rate of parallel flow heat exchanger was obtained in the condition of non-uniform flow distribution by 3D numerical simulation. The maximum theoretical heat transfer rate of parallel flow heat exchanger was obtained through 1D calculation. Ultimately, the correlation of the influence of non-uniform flow distribution on heat transfer efficiency was obtained by the comparative analysis of non-uniform flow distribution and heat transfer efficiency and regression calculation. It was found that the forecasted heat transfer efficiency error of correlation was within 2%.


2010 ◽  
Vol 18 (04) ◽  
pp. 265-277 ◽  
Author(s):  
NAE-HYUN KIM ◽  
SOO-HWAN KIM ◽  
JI-HOON PARK

The effect of inlet configuration (parallel, normal, vertical) on flow distribution in a parallel flow heat exchanger consisting of round headers and ten flat tubes is experimentally studied using air and water. The effects of tube protrusion depth as well as header mass flux, and quality are investigated for upward flow configuration. It is shown that best flow distribution is obtained for vertical inlet configuration, followed by normal inlet and parallel inlet configuration. For upward flow, significant portion of the water flows through the rear part of the header. As protrusion depth increases, more water is forced to the rear part of the header. The effect is most significant for parallel inlet, followed by normal and vertical inlet. The effect of mass flux or quality is opposite to that of the protrusion depth. Possible explanation is provided from flow visualization results.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6330
Author(s):  
Byunghui Kim ◽  
Kuisoon Kim ◽  
Seokho Kim

Parallel flow heat exchangers with manifolds are widely used in various industries owing to their compact size and ease of application. Research has been conducted to understand their flow characteristics and improve flow distribution and pressure drop performance; however, it is difficult to derive generalized improvements under different conditions for each application. This study proposes a novel design to improve the flow characteristics of a compact heat exchanger with a sudden expansion area of a dividing manifold and uses computational fluid dynamics simulation to verify it. The abrupt cross-sectional area change in the dividing manifold induces a jet flow near the entry region, which causes the flow maldistribution of the first few parallel tubes. To improve the efficiency of the dividing manifold, simple and novel designs with a converging-diverging area in the manifold header have been proposed. Parametric studies on the novel designs show improvements of up to 37.5% and 52.0% flow uniformity and 2.65% and 0.74% pressure drop performance for U- and Z-types, respectively, compared to the base model. Thus, the simple and easily fabricated quadrilateral shape can improve the flow maldistribution and pressure drop caused by a dividing manifold with a sudden area expansion.


2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim ◽  
Hoon-Ki Choi

A numerical study for the evaluation of heat transfer correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor is performed. Three different types of flows such as parallel flow, cross flow, and two inclined flows are considered. Calculations are performed for these three typical flows in a heat exchanger changing turbulence models. The tested turbulence models are the shear stress transport (SST) model and the SSG-Reynolds stress turbulence model by Speziale, Sarkar, and Gaski (1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach,” J. Fluid Mech., 227, pp. 245–272). The computational model for parallel flow is a flow past tubes inside a circular cylinder and those for the cross flow and inclined flows are flows past the perpendicular and inclined tube banks enclosed by a rectangular duct. The computational results show that the SST model produces the most reliable results that can distinguish the best heat transfer correlation from other correlations for the three different flows. It was also shown that the SSG-RSTM high-Reynolds number turbulence model does not deal with the low-Prandtl number effect properly when the Peclet number is small. According to the present calculations for a parallel flow, all the old correlations do not match with the present numerical solutions and a new correlation is proposed. The correlations by Dwyer (1966, “Recent Developments in Liquid-Metal Heat Transfer,” At. Energy Rev., 4, pp. 3–92) for a cross flow and its modified correlation that takes into account of flow inclination for inclined flows work best and are accurate enough to be used for the design of the heat exchanger.


Sign in / Sign up

Export Citation Format

Share Document