Elastic-plastic collapse of 3-D damaged cylindrical shells subjected to uniform external pressure

2004 ◽  
Vol 10 (4) ◽  
pp. 343-349 ◽  
Author(s):  
X. W. Zhao ◽  
J. H. Luo ◽  
M. Zheng ◽  
H. L. Li ◽  
M. X. Lu
1973 ◽  
Vol 95 (1) ◽  
pp. 215-218 ◽  
Author(s):  
H. M. Haydl ◽  
A. N. Sherbourne

This paper suggests a simple numerical approach to the limit analysis of cantilever cylindrical shells. The loads considered are external pressure and external pressure combined with a moment at the free shell end. It is shown that the collapse loads are within 4.5 percent on the safe side of the exact von Mises limit loads. The extension of the method of analysis to more complex problems is suggested.


2012 ◽  
Vol 594-597 ◽  
pp. 2753-2756
Author(s):  
Lei Chen ◽  
Yi Liang Peng ◽  
Li Wan ◽  
Hong Bo Li

Abstract: Cylindrical shells are widely used in civil engineering. Examples include cooling towers, nuclear containment vessels, metal silos and tanks for storage of bulk solids and liquids, and pressure vessels. Cylindrical shells subjected to non-uniform wind pressure display different buckling behaviours from those of cylinders under uniform external pressure. At different aspect ratios, quite complex buckling modes occur. The geometric nonlinearity may have a significant effect on the buckling behavior. This paper presents a widely study of the nonlinear buckling behavior of cylindrical shells of uniform thickness under wind loading. The finite element analyses indicate that for stocky cylinders, the nonlinear buckling modes are the circumferential compression buckling mode, which is similar to cylinders under uniform external pressure, while for cylinders in mediate length, pre-buckling ovalization of the cross-section has an important influence on the buckling strength.


Sign in / Sign up

Export Citation Format

Share Document