collapse mechanism
Recently Published Documents


TOTAL DOCUMENTS

360
(FIVE YEARS 113)

H-INDEX

25
(FIVE YEARS 4)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Riza Suwondo ◽  
Lee Cunningham ◽  
Martin Gillie ◽  
Made Suangga ◽  
Irpan Hidayat

PurposeThe robustness of building structures in a fire has recently drawn wide attention. This study presents the progressive collapse analysis of steel frame building structures under localised fire. The main objective of this study is to propose methods to enhance the structural collapse resistance of such structures in fire.Design/methodology/approachA modelling method was developed and validated against both experimental and analytical studies. Then, a series of robustness analyses were performed to investigate the interaction among the members and the pattern of load distribution within the structures. These analyses show that lateral resistance and load redistribution have a vital role in the robustness of the building. Thus, two approaches have been adopted to enhance the robustness of the focused steel frame during a fire.FindingsIt is found that increased size of floor beams and vertical bracing systems are effective measures in preventing whole structure collapse. The larger beam section is able to prevent catenary action so that the load in the failed columns can safely transfer to the adjacent columns without buckling. On the other hand, the bracing system improves the lateral resistance that can accommodate the lateral force when catenary action occurs in the beam.Originality/valuePrevious studies have focused on the collapse mechanism of steel frame structures. However, the parameters affecting the structural robustness in a fire have not yet been explored. To address this gap, this study adopted numerical modelling to undertake parametric studies to identify effective methods to improve the robustness of such structures under fire conditions.


2021 ◽  
Vol 13 (23) ◽  
pp. 13363
Author(s):  
Neda M. Sokolović ◽  
Milica Petrović ◽  
Ana Kontić ◽  
Suzana Koprivica ◽  
Nenad Šekularac

The importance of masonry arch bridges as a traffic network element calls for a thorough analysis focused on both structural stability and loading capacity of these historical structures, considering the usage of these bridges in contemporary traffic conditions. This paper focuses on the analysis of longitudinal cracks in a single span masonry arch bridge to evaluate its influence on structural behaviour of the system. As longitudinal cracks do not necessarily present an inevitable collapse mechanism, analysis of the causes is crucial for evaluating the serviceability and functionality of the bridge investigated. The methodology is based on the following: literature review, observation of the stone bridge in Ivanjica, geological testing of the site, geophysical testing of the bridge, laboratory testing of mechanical characteristics of stone used for the bridge construction and biological analysis of the samples of implemented materials on the bridge. Finite element analysis of the bridge was conducted to define the causes of the longitudinal cracks. The 3D simulation model was based on the data collected through observation and experimental analysis. This paper provides extensive research on a single span masonry bridge, examining how different deterioration mechanisms, in conjunction, can lead to the appearance of cracks in masonry arch bridges and provide remedial measures accordingly.


Author(s):  
Gianmarco de Felice ◽  
Rebecca Fugger ◽  
Francesca Gobbin

AbstractThe out-of-plane collapse of the façade represents one of the major threats and the most frequent cause of damages of churches due to strong earthquakes. Due to the slenderness of the façade and the lack of adequate connections to the side walls and the wooden roof, the seismic action can trigger the overturning. A detailed assessment is therefore required to judge whether or not to intervene. This paper presents an approach for the seismic assessment of the stability of the façade, through a discrete element model based on a photographic survey, with the aim of representing the actual geometry and arrangement of the stone units and their effects on the kinematics of the overturning. The collapse mechanism is simulated with both, quasi-static pushover and dynamic pulse-based analyses and the results compared to those of conventional rigid-body kinematics. The proposed approach is then applied to seven masonry churches that suffered severe damages during the 2009 L’Aquila (Italy) earthquake and the failure mode provided by the analyses is compared to the damages caused by the earthquake. The method is able to give a reliable estimate of the expected failure mechanism, taking into account the quality of the masonry and the connections to the side walls, while also providing the seismic acceleration required to trigger the motion and the ultimate displacement beyond which collapse occurs.


Water ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 2969
Author(s):  
Maryam Shademani ◽  
Bruno Blais ◽  
Ahmad Shakibaeinia

Sub-aerial (dry) and submerged dense granular collapses are studied by means of a three-phase unresolved computational fluid dynamics-discrete element method (CFD-DEM) numerical model. Physical experiments are also performed to provide data for validation and further analysis. Validations show good compatibility between the numerical and experimental results. Collapse mechanism as well as post-collapse morphological parameters, such as granular surface profile and runout distance, are analyzed. The spatiotemporal variation of solid volume fraction is also investigated. The effect granular column aspect ratio is studied and found to be a key factor in granular morphology for both submerged and dry conditions. The volume fraction analysis evolution shows an expansion and re-compaction trend, correlated with the granular movement.


2021 ◽  
Vol 9 ◽  
Author(s):  
Thomas M. Ravens ◽  
Sasha Peterson

Two prominent arctic coastal erosion mechanisms affect the coastal bluffs along the North Slope of Alaska. These include the niche erosion/block collapse mechanism and the bluff face thaw/slump mechanism. The niche erosion/block collapse erosion mechanism is dominant where there are few coarse sediments in the coastal bluffs, the elevation of the beach below the bluff is low, and there is frequent contact between the sea and the base of the bluff. In contrast, the bluff face thaw/slump mechanism is dominant where significant amounts of coarse sediment are present, the elevation of the beach is high, and contact between the sea and the bluff is infrequent. We show that a single geologic parameter, coarse sediment areal density, is predictive of the dominant erosion mechanism and is somewhat predictive of coastal erosion rates. The coarse sediment areal density is the dry mass (g) of coarse sediment (sand and gravel) per horizontal area (cm2) in the coastal bluff. It accounts for bluff height and the density of coarse material in the bluff. When the areal density exceeds 120 g cm−2, the bluff face thaw/slump mechanism is dominant. When the areal density is below 80 g cm−2, niche erosion/block collapse is dominant. Coarse sediment areal density also controls the coastal erosion rate to some extent. For the sites studied and using erosion rates for the 1980–2000 period, when the sediment areal density exceeds 120 g cm−2, the average erosion rate is low or 0.34 ± 0.92 m/yr. For sediment areal density values less than 80 g cm−2, the average erosion rate is higher or 2.1 ± 1.5 m/yr.


2021 ◽  
Vol 11 (19) ◽  
pp. 8935
Author(s):  
Yale Li ◽  
Zhouhong Zong ◽  
Bingwen Yang ◽  
Zhanghua Xia ◽  
Yuanzheng Lin ◽  
...  

The continuous girder bridge is the main type of small- and medium-sized bridges; however, it has poor collapse resistance and suffers frequent earthquake damage. In order to grasp its collapse mechanism and clarify the internal and external factors affecting its collapse resistance, a 1:3-scaled, two-span bridge model subjected to shaking table test research was taken as the research object. The factors such as seismic characteristics, multi-directional seismic coupling, span, pier height, and structural system type were analyzed to determine the influences on the collapse mode of the bridge. The numerical results showed that different ground motion characteristics led to different collapse modes. Vertical ground motion had little effect on the structural response of the bridge. The change of span and pier height significantly changed the collapse resistance. A seismic isolation design could improve the anti-collapse performance, but the collapse mode varied with the system. The final anti-collapse design suggestions could provide reference for the seismic reinforcement of existing continuous girder bridges and the seismic design of continuous girder bridges that will be constructed.


Author(s):  
Zhiping Luo

γ-Alumina is a used material, while its precise crystal structure and transformation mechanism derived from boehmite have remained unclear in the literature for decades. In this work, quantitative electron microscopy has been applied to study the crystalline structure of γ-alumina and its transformation mechanism from boehmite. Based on Rietveld refinement of electron diffraction patterns, a new tetragonal structure model, with a space group of I41/amd (No. 141), was proposed for the γ-alumina phase, with Al cations on 4a, 8c, 8d and 16g sites and O anions on the 16h site, which could provide better fits than current models. During the boehmite to γ-alumina transformation induced by e-beam irradiation, when the boehmite layers were oriented along the edge-on direction, a shrinkage caused by dehydration was directly observed. Two kinds of boehmite to γ-alumina transformation mechanisms, namely collapse and reaction mechanisms, were elucidated crystallographically in detail with new insights through an intermediate structure, and the reaction mechanism was demonstrated to produce much reduced changes in dimensions and volume, compared with the collapse mechanism. The experimental observations supported the reaction mechanism, which occurred through partial occupation of the dehydrated space by diffusion in the initial stage of the transformation, without the formation of voids that only appeared after the initial stage. Filling tetrahedral interstices of the intermediate structure with Al cations in different ways yields tetragonal or cubic γ-alumina structures, and the tetragonal structure is energetically favorable because of smaller lattice distortions required, compared with the cubic structure. The crystallographic orientation relationships of γ-alumina with the parent boehmite phase deduced from the proposed mechanisms are consistent with the experimental observations.


Buildings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 406
Author(s):  
Corrado Chisari ◽  
Daniela Cacace ◽  
Gianfranco De De Matteis

Buttressed arches represent some of the most vulnerable elements in historical masonry buildings under seismic actions. Given their structural, architectural and often artistic importance, it is paramount to investigate effective retrofitting measures which satisfy reversibility and compatibility requirements for historical heritage. Among these, Fibre-Reinforced Mortar (FRM), characterised by enhanced ductility, has recently emerged in the scientific literature. In this paper, a numerical investigation aimed at exploring the effectiveness of this seismic retrofitting technique, when applied at intrados or extrados of various typologies of buttressed arches, is presented. An automatic tool for limit analysis is described and validated against a nonlinear Discrete Macro-Element modelling approach. This precedes an extensive parametric analysis, which has highlighted the effect of various geometrical features of the system on both collapse mechanism and maximum acceleration in the unreinforced configuration, and the high increase in seismic capacity provided by the retrofitting. This is particularly remarkable in case of local mechanism, i.e., wholly within the arch, in which case the FRM may be responsible of an overall shifting to a semi-global failure type.


ce/papers ◽  
2021 ◽  
Vol 4 (2-4) ◽  
pp. 1367-1370
Author(s):  
Shariq Naqvi ◽  
Feng Fu

Sign in / Sign up

Export Citation Format

Share Document