Operating strategies on HCCI combustion

MTZ worldwide ◽  
2010 ◽  
Vol 71 (9) ◽  
pp. 56-61 ◽  
Author(s):  
Goran Babic ◽  
Michael Bargende
1998 ◽  
Vol 37 (6-7) ◽  
pp. 241-248 ◽  
Author(s):  
A. Netzband ◽  
H. Christiansen ◽  
B. Maaß ◽  
G. Werner

Besides the beneficial use of dredged material, sustainable relocation, which means keeping the sediments in the natural aquatic material circulation, is one goal for handling dredged material in the port of Hamburg. Decreasing contamination the River Elbe and new dredged material guidelines provide a basis for this. With comprehensive investigations, near- and far-field transport and the effects of relocation regarding the water quality and the benthic community were determined thus deveoloping conditions for future operating strategies.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 583
Author(s):  
Lukas Pröhl ◽  
Harald Aschemann ◽  
Roberto Palacin

The aim of this paper is the optimization of velocity trajectories for electrical railway vehicles with the focus on total energy consumption. On the basis of four fundamental operating modes—acceleration, cruising, coasting, and braking—energy-optimal trajectories are determined by optimizing the sequence of the operating modes as well as the corresponding switching points. The optimization approach is carried out in two consecutive steps. The first step ensures compliance with the given timetable, regarding both time and position constraints. In the second step, the influence of different operating strategies, such as load distribution and the switch-off of traction components during low loads, are analyzed to investigate the characteristics of the energy-optimal velocity trajectory. A detailed simulation model has been developed to carry out the analysis, including an assessment of its capabilities and advantages. The results suggest that the application of load-distribution techniques, either by a switch-off of parallel traction units or by a load-distribution between active units, can affect the energy-optimal driving style.


2003 ◽  
Vol 4 (3) ◽  
pp. 163-177 ◽  
Author(s):  
P. A. Caton ◽  
A. J. Simon ◽  
J. C. Gerdes ◽  
C. F. Edwards

Studies have been conducted to assess the performance of homogeneous charge compression ignition (HCCI) combustion initiated by exhaust reinduction from the previous engine cycle. Reinduction is achieved using a fully flexible electrohydraulic variable-valve actuation system. In this way, HCCI is implemented at low compression ratio without throttling the intake or exhaust, and without preheating the intake charge. By using late exhaust valve closing and late intake valve opening strategies, steady HCCI combustion was achieved over a range of engine conditions. By varying the timing of both valve events, control can be exerted over both work output (load) and combustion phasing. In comparison with throttled spark ignition (SI) operation on the same engine, HCCI achieved 25–55 per cent of the peak SI indicated work, and did so at uniformly higher thermal efficiency. This was accompanied by a two order of magnitude reduction in NO emissions. In fact, single-digit (ppm) NO emissions were realized under many load conditions. In contrast, hydrocarbon emissions proved to be significantly higher in HCCI combustion under almost all conditions. Varying the equivalence ratio showed a wider equivalence ratio tolerance at low loads for HCCI.


2001 ◽  
Author(s):  
Salvador M. Aceves ◽  
Daniel L. Flowers ◽  
Joel Martinez-Frias ◽  
J. Ray Smith ◽  
Robert Dibble ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document