Relocation of dredged material from Hamburg harbour in the River Elbe

1998 ◽  
Vol 37 (6-7) ◽  
pp. 241-248 ◽  
Author(s):  
A. Netzband ◽  
H. Christiansen ◽  
B. Maaß ◽  
G. Werner

Besides the beneficial use of dredged material, sustainable relocation, which means keeping the sediments in the natural aquatic material circulation, is one goal for handling dredged material in the port of Hamburg. Decreasing contamination the River Elbe and new dredged material guidelines provide a basis for this. With comprehensive investigations, near- and far-field transport and the effects of relocation regarding the water quality and the benthic community were determined thus deveoloping conditions for future operating strategies.

Author(s):  
Sina Keller ◽  
Philipp Maier ◽  
Felix Riese ◽  
Stefan Norra ◽  
Andreas Holbach ◽  
...  

Inland waters are of great importance for scientists as well as authorities since they are essential ecosystems and well known for their biodiversity. When monitoring their respective water quality, in situ measurements of water quality parameters are spatially limited, costly and time-consuming. In this paper, we propose a combination of hyperspectral data and machine learning methods to estimate and therefore to monitor different parameters for water quality. In contrast to commonly-applied techniques such as band ratios, this approach is data-driven and does not rely on any domain knowledge. We focus on CDOM, chlorophyll a and turbidity as well as the concentrations of the two algae types, diatoms and green algae. In order to investigate the potential of our proposal, we rely on measured data, which we sampled with three different sensors on the river Elbe in Germany from 24 June–12 July 2017. The measurement setup with two probe sensors and a hyperspectral sensor is described in detail. To estimate the five mentioned variables, we present an appropriate regression framework involving ten machine learning models and two preprocessing methods. This allows the regression performance of each model and variable to be evaluated. The best performing model for each variable results in a coefficient of determination R 2 in the range of 89.9% to 94.6%. That clearly reveals the potential of the machine learning approaches with hyperspectral data. In further investigations, we focus on the generalization of the regression framework to prepare its application to different types of inland waters.


Author(s):  
Joseph B. Wiley, III ◽  
Ramesh M. Tharwani ◽  
Linda P. Morgan

2013 ◽  
Vol 53 (1) ◽  
pp. 407
Author(s):  
Chris Hewitson ◽  
Eva Dec ◽  
Tony Lines

This peer-reviewed paper examines the risks and responsibilities of water providers and the process resource companies should undertake to document how they will deliver a safe and secure water supply to their employees and contractors, and the communities in which they operate, thereby reducing the risks of water quality incidents and managing the impact to the organisation should an incident occur. Water quality incidents can have major impacts to human health and the brand perception of the resource company supplying the water, and can potentially shutdown resource abstraction. Resource companies have a duty of care to provide a secure and safe drinking water supply. This is reinforced by state health departments directing resource organisations to comply with the Australian Drinking Water Guidelines (ADWG), which were updated in 2011 (National Health and Medical Research Council, 2011). Organisations in the CSG industry experience an additional challenge—managing water by-product from gas extraction. There are drivers for the beneficial use of this water—including irrigation, aquifer recharge and municipal supply—resulting in changes to legislation in Queensland (DERM, 2010) that require a process similar to ADWG recommendations, where beneficial use or disposal may impact potable supplies. The ADWG provides clear guidance to potable water providers—whether they are supplying a few consumers or major towns requiring a Drinking Water Quality Management System (DWQM System). This guidance includes documenting a clear process to securing a clean water source, making the water safe to consume and proving it is safe. Developing a DWQM System enables resource companies to understand issues in supplying drinking water through regular review and improvement, while minimising and managing the health risks to consumers.


1983 ◽  
Vol 15 (10) ◽  
pp. 89-99
Author(s):  
Bo Møller ◽  
K I Dahl-Madsen

In the years from 1970-1982 52 site studies and monitoring studies have been carried out at major existing and planned power plants. The results from the studies have been used in a planning system for water quality. This planning system, which is water quality related, is described in this paper. An important part of the planning system is the description of size and distribution of excess temperature fields and the related biological conditions. In the biological monitoring, emphasis is placed on the benthic community as more vulnerable to the cooling water discharge. The studies have shown that the excess temperature field within the 1-2° isotherm can produce measurable changes in the benthic community. The temperature effect in the pelagic zone is marginal, however, some effects are seen at sites with a deep water intake of nutrient rich water. Entrainment of fish and Zooplankton can be important in bays and estuaries.


Sign in / Sign up

Export Citation Format

Share Document