A visual search examination of attentional biases among individuals with high and low drive for thinness

Author(s):  
C. M. Janelle ◽  
H. A. Hausenblas ◽  
E. A. Fallon ◽  
R. E. Gardner
2017 ◽  
Vol 40 ◽  
Author(s):  
Martin Eimer

AbstractHulleman & Olivers (H&O) reject item-based serial models of visual search, and they suggest that items are processed equally and globally during each fixation period. However, neuroscientific studies have shown that attentional biases can emerge in parallel but in a spatially selective item-based fashion. Even within a parallel architecture for visual search, the item remains the critical unit of selection.


2014 ◽  
Vol 26 (12) ◽  
pp. 2789-2797 ◽  
Author(s):  
Paige E. Scalf ◽  
JeeWon Ahn ◽  
Diane M. Beck ◽  
Alejandro Lleras

The ventral attentional network (VAN) is thought to drive “stimulus driven attention” [e.g., Asplund, C. L., Todd, J. J., Snyder, A. P., & Marois, R. A central role for the lateral prefrontal cortex in goal-directed and stimulus-driven attention. Nature Neuroscience, 13, 507–512, 2010; Shulman, G. L., McAvoy, M. P., Cowan, M. C., Astafiev, S. V., Tansy, A. P., D' Avossa, G., et al. Quantitative analysis of attention and detection signals during visual search. Journal of Neurophysiology, 90, 3384–3397, 2003]; in other words, it instantiates within the current stimulus environment the top–down attentional biases maintained by the dorsal attention network [e.g., Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L., & Corbetta, M. An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 25, 4593–4604, 2005]. Previous work has shown that the dorsal attentional network is sensitive to trial history, such that it is challenged by changes in task goals and facilitated by repetition thereof [e.g., Kristjánsson, A., Vuilleumier, P., Schwartz, S., Macaluso, E., & Driver, J. Neural basis for priming of pop-out during visual search revealed with fMRI. Cerebral Cortex, 17, 1612–1624, 2007]. Here, we investigate whether the VAN also preserves information across trials such that it is challenged when previously rejected stimuli become task relevant. We used fMRI to investigate the sensitivity of the ventral attentional system to prior history effects as measured by the distractor preview effect. This behavioral phenomenon reflects a bias against stimuli that have historically not supported task performance. We found regions traditionally considered to be part of the VAN (right middle frontal gyrus, inferior frontal gyrus and right supramarginal gyrus) [Shulman, G. L., McAvoy, M. P., Cowan, M. C., Astafiev, S. V., Tansy, A. P., D' Avossa, G., et al. Quantitative analysis of attention and detection signals during visual search. Journal of Neurophysiology, 90, 3384–3397, 2003] to be more active when task-relevant stimuli had not supported task performance in a previous trial than when they had. Investigations of the ventral visual system suggest that this effect is more reliably driven by trial history preserved within the VAN than that preserved within the visual system per se. We conclude that VAN maintains its interactions with top–down stimulus biases and bottom–up stimulation across time, allowing previous experience with the stimulus environment to influence attentional biases under current circumstances.


Author(s):  
Nick Donnelly ◽  
Julie A. Hadwin ◽  
Tamaryn Menneer ◽  
Helen J. Richards

2015 ◽  
Vol 74 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Alexandre Coutté ◽  
Gérard Olivier ◽  
Sylvane Faure

Computer use generally requires manual interaction with human-computer interfaces. In this experiment, we studied the influence of manual response preparation on co-occurring shifts of attention to information on a computer screen. The participants were to carry out a visual search task on a computer screen while simultaneously preparing to reach for either a proximal or distal switch on a horizontal device, with either their right or left hand. The response properties were not predictive of the target’s spatial position. The results mainly showed that the preparation of a manual response influenced visual search: (1) The visual target whose location was congruent with the goal of the prepared response was found faster; (2) the visual target whose location was congruent with the laterality of the response hand was found faster; (3) these effects have a cumulative influence on visual search performance; (4) the magnitude of the influence of the response goal on visual search is marginally negatively correlated with the rapidity of response execution. These results are discussed in the general framework of structural coupling between perception and motor planning.


2008 ◽  
Vol 67 (2) ◽  
pp. 71-83 ◽  
Author(s):  
Yolanda A. Métrailler ◽  
Ester Reijnen ◽  
Cornelia Kneser ◽  
Klaus Opwis

This study compared individuals with pairs in a scientific problem-solving task. Participants interacted with a virtual psychological laboratory called Virtue to reason about a visual search theory. To this end, they created hypotheses, designed experiments, and analyzed and interpreted the results of their experiments in order to discover which of five possible factors affected the visual search process. Before and after their interaction with Virtue, participants took a test measuring theoretical and methodological knowledge. In addition, process data reflecting participants’ experimental activities and verbal data were collected. The results showed a significant but equal increase in knowledge for both groups. We found differences between individuals and pairs in the evaluation of hypotheses in the process data, and in descriptive and explanatory statements in the verbal data. Interacting with Virtue helped all students improve their domain-specific and domain-general psychological knowledge.


Author(s):  
Angela A. Manginelli ◽  
Franziska Geringswald ◽  
Stefan Pollmann

When distractor configurations are repeated over time, visual search becomes more efficient, even if participants are unaware of the repetition. This contextual cueing is a form of incidental, implicit learning. One might therefore expect that contextual cueing does not (or only minimally) rely on working memory resources. This, however, is debated in the literature. We investigated contextual cueing under either a visuospatial or a nonspatial (color) visual working memory load. We found that contextual cueing was disrupted by the concurrent visuospatial, but not by the color working memory load. A control experiment ruled out that unspecific attentional factors of the dual-task situation disrupted contextual cueing. Visuospatial working memory may be needed to match current display items with long-term memory traces of previously learned displays.


2000 ◽  
Vol 15 (2) ◽  
pp. 286-296 ◽  
Author(s):  
Arthur F. Kramer ◽  
Paul Atchley
Keyword(s):  

2013 ◽  
Vol 27 (4) ◽  
pp. 1044-1049 ◽  
Author(s):  
Ming-Chou Ho ◽  
Catherine Fountain Chang ◽  
Ren-Hau Li ◽  
Tze-Chun Tang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document