Conditions for making direct reduced iron, transition direct reduced iron and pig iron nuggets in a laboratory furnace — Temperature-time transformations

2007 ◽  
Vol 24 (1) ◽  
pp. 41-50
Author(s):  
B. Anameric ◽  
S. K. Kawatra
2005 ◽  
Vol 42 (04) ◽  
pp. 184-191
Author(s):  
Miltiadis Kotinis

The projected growth in production of pig iron nuggets on the Iron Range of northeastern Minnesota provides new opportunities for marine transportation on the Great Lakes. The shipping of this higher-value commodity necessitates low freight rates and minimum inventory costs. This paper examines viable ship design concepts to provide competitive transportation solutions.


Metals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 32 ◽  
Author(s):  
Dmitry Valeev ◽  
Dmitry Zinoveev ◽  
Alex Kondratiev ◽  
Dmitry Lubyanoi ◽  
Denis Pankratov

The chemical and mineral composition of the red mud from the Ural Aluminum Plant were studied by XRF, XRD, and Mössbauer spectroscopy. Experiments on reductive smelting of red mud were carried out in a range of temperatures (1650–1750 °C) to recover iron from the aluminum production waste with maximum efficiency. It was found that it is possible to obtain pig iron with a high content of titanium, phosphorus, and vanadium, and low sulfur content. The efficiency of iron recovery at 1750 °C was found to be around 98%. Thermodynamic calculations were carried out to assist in finding the optimal conditions for the process (e.g., carbon content, furnace temperature, slag liquidus temperature). It was also found that the pig iron phase obtained at 1650 to 1700 °C is not separated from the slag phase into ingot compared with the sample obtained at 1750 °C. Pig iron obtained at 1750 °C can be used to produce molds for the steel-casting equipment.


2006 ◽  
Vol 23 (1) ◽  
pp. 52-56 ◽  
Author(s):  
B. Anameric ◽  
S. K. Kawatra

Author(s):  
R.K. Dishwar ◽  
O.P. Sinha

The present work represents a comparative study on the impurities removal from pig iron melt by addition of partially reduced highly fluxed direct reduced iron (DRI) to make steel in a 2 kg capacity electric arc furnace (EAF). Three types of fluxed DRI (30, 50, 80% Reduction (%R) with similar basicity-8) were used to maintain different level of oxidizing potential on the bath for studying the kinetic behaviour of impurities removal from melt. Results showed that the rate of removal of impurities (i.e. C, Si, Mn, P, S etc.) was increased initially up to 5 minutes of reaction time then decreased afterwards. Phosphorus (~64%), sulfur (~16%) and carbon (~94%) were removed simultaneously up to 25 minutes of reaction time using 30%R fluxed DRI. Similarly, phosphorus (~33%), sulfur (~50%) and carbon (~62%) were removed simultaneously using 50%R fluxed DRI while highly reduced (80%R) flux DRI removed sulfur (~58%), carbon (~56%) with a small fraction of phosphorus (~18%) from pig iron. It was observed in all the cases that silicon (>99%) and manganese (>80%) were removed. From the present study, it can be concluded that ~30%R DRI is favorable for effective phosphorus removal whereas ~80%R is favorable for sulfur removal. The significant removal of impurities could be achieved by charging ~50%R fluxed DRI in the pig iron melt.


2007 ◽  
Vol 47 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Basak Anameric ◽  
S. Komar Kawatra
Keyword(s):  
Pig Iron ◽  

Author(s):  
Shulin Wen ◽  
Jingwei Feng ◽  
A. Krajewski ◽  
A. Ravaglioli

Hydroxyapatite bioceramics has attracted many material scientists as it is the main constituent of the bone and the teeth in human body. The synthesis of the bioceramics has been performed for years. Nowadays, the synthetic work is not only focused on the hydroapatite but also on the fluorapatite and chlorapatite bioceramics since later materials have also biological compatibility with human tissues; and they may also be very promising for clinic purpose. However, in comparison of the synthetic bioceramics with natural one on microstructure, a great differences were observed according to our previous results. We have investigated these differences further in this work since they are very important to appraise the synthetic bioceramics for their clinic application.The synthetic hydroxyapatite and chlorapatite were prepared according to A. Krajewski and A. Ravaglioli and their recent work. The briquettes from different hydroxyapatite or chlorapatite powders were fired in a laboratory furnace at the temperature of 900-1300°C. The samples of human enamel selected for the comparison with synthetic bioceramics were from Chinese adult teeth.


Sign in / Sign up

Export Citation Format

Share Document