Optical interference measurements and fracture mechanics analysis of crack tip craze zones

Author(s):  
W. Döll
Impact ◽  
2019 ◽  
Vol 2019 (10) ◽  
pp. 105-107
Author(s):  
Hiroshi Okada

Professor Hiroshi Okada and his team from the Department of Mechanical Engineering, Faculty of Science and Technology, Tokyo University of Science, Japan, are engaged in the field of computational fracture mechanics. This is an area of computational engineering that refers to the creation of numerical methods to approximate the crack evolutions predicted by new classes of fracture mechanics models. For many years, it has been used to determine stress intensity factors and, more recently, has expanded into the simulation of crack nucleation and propagation. In their work, the researchers are proposing new methods for fracture mechanics analysis and solid mechanics analysis.


2000 ◽  
Vol 65 (5) ◽  
pp. 573-593 ◽  
Author(s):  
Sung-Ryong Kim ◽  
John A. Nairn

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 592
Author(s):  
Feng Yue ◽  
Ziyan Wu

The fracture mechanical behaviour of thin-walled structures with cracks is highly significant for structural strength design, safety and reliability analysis, and defect evaluation. In this study, the effects of various factors on the fracture parameters, crack initiation angles and plastic zones of thin-walled cylindrical shells with cracks are investigated. First, based on the J-integral and displacement extrapolation methods, the stress intensity factors of thin-walled cylindrical shells with circumferential cracks and compound cracks are studied using linear elastic fracture mechanics, respectively. Second, based on the theory of maximum circumferential tensile stress of compound cracks, the number of singular elements at a crack tip is varied to determine the node of the element corresponding to the maximum circumferential tensile stress, and the initiation angle for a compound crack is predicted. Third, based on the J-integral theory, the size of the plastic zone and J-integral of a thin-walled cylindrical shell with a circumferential crack are analysed, using elastic-plastic fracture mechanics. The results show that the stress in front of a crack tip does not increase after reaching the yield strength and enters the stage of plastic development, and the predicted initiation angle of an oblique crack mainly depends on its original inclination angle. The conclusions have theoretical and engineering significance for the selection of the fracture criteria and determination of the failure modes of thin-walled structures with cracks.


Sign in / Sign up

Export Citation Format

Share Document