Finite dimensional compensators for some hyperbolic systems with boundary control

Author(s):  
R. F. Curtain
Author(s):  
Georges Bastin ◽  
Jean-Michel Coron

2017 ◽  
Vol 36 (2) ◽  
pp. 485-513
Author(s):  
Krishna Chaitanya Kosaraju ◽  
Ramkrishna Pasumarthy ◽  
Dimitri Jeltsema

Abstract It is well documented that shaping the energy of finite-dimensional port-Hamiltonian systems by interconnection is severely restricted due to the presence of dissipation. This phenomenon is usually referred to as the dissipation obstacle. In this paper, we show the existence of dissipation obstacle in infinite dimensional systems. Motivated by this, we present the Brayton–Moser formulation, together with its equivalent Dirac structure. Analogous to finite dimensional systems, identifying the underlying gradient structure is crucial in presenting the stability analysis. We elucidate this through an example of Maxwell’s equations with zero energy flows through the boundary. In the case of mixed-finite and infinite-dimensional systems, we find admissible pairs for all the subsystems while preserving the overall structure. We illustrate this using a transmission line system interconnected to finite dimensional systems through its boundary. This ultimately leads to a new passive map, using this we solve a boundary control problem, circumventing the dissipation obstacle.


1995 ◽  
Vol 8 (2) ◽  
pp. 177-188
Author(s):  
W. L. Chan ◽  
S. P. Yung

Sharp error estimates for optimality are established for a class of distributed parameter control problems that include elliptic, parabolic, hyperbolic systems with impulsive control and boundary control. The estimates are obtained by constructing manageable dual problems via the extremum principle.


Sign in / Sign up

Export Citation Format

Share Document