Combinatorial properties of sign-patterns in some classes of matrices

Author(s):  
Miroslav Fiedler



Author(s):  
Paolo Dulio ◽  
Andrea Frosini ◽  
Simone Rinaldi ◽  
Lama Tarsissi ◽  
Laurent Vuillon

AbstractA remarkable family of discrete sets which has recently attracted the attention of the discrete geometry community is the family of convex polyominoes, that are the discrete counterpart of Euclidean convex sets, and combine the constraints of convexity and connectedness. In this paper we study the problem of their reconstruction from orthogonal projections, relying on the approach defined by Barcucci et al. (Theor Comput Sci 155(2):321–347, 1996). In particular, during the reconstruction process it may be necessary to expand a convex subset of the interior part of the polyomino, say the polyomino kernel, by adding points at specific positions of its contour, without losing its convexity. To reach this goal we consider convexity in terms of certain combinatorial properties of the boundary word encoding the polyomino. So, we first show some conditions that allow us to extend the kernel maintaining the convexity. Then, we provide examples where the addition of one or two points causes a loss of convexity, which can be restored by adding other points, whose number and positions cannot be determined a priori.



2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Neelima Agarwal ◽  
Lorenzo Magnea ◽  
Sourav Pal ◽  
Anurag Tripathi

Abstract Correlators of Wilson-line operators in non-abelian gauge theories are known to exponentiate, and their logarithms can be organised in terms of collections of Feynman diagrams called webs. In [1] we introduced the concept of Cweb, or correlator web, which is a set of skeleton diagrams built with connected gluon correlators, and we computed the mixing matrices for all Cwebs connecting four or five Wilson lines at four loops. Here we complete the evaluation of four-loop mixing matrices, presenting the results for all Cwebs connecting two and three Wilson lines. We observe that the conjuctured column sum rule is obeyed by all the mixing matrices that appear at four-loops. We also show how low-dimensional mixing matrices can be uniquely determined from their known combinatorial properties, and provide some all-order results for selected classes of mixing matrices. Our results complete the required colour building blocks for the calculation of the soft anomalous dimension matrix at four-loop order.



2020 ◽  
pp. 1-56
Author(s):  
REDMOND MCNAMARA

Abstract We prove the logarithmic Sarnak conjecture for sequences of subquadratic word growth. In particular, we show that the Liouville function has at least quadratically many sign patterns. We deduce the main theorem from a variant which bounds the correlations between multiplicative functions and sequences with subquadratically many words which occur with positive logarithmic density. This allows us to actually prove that our multiplicative functions do not locally correlate with sequences of subquadratic word growth. We also prove a conditional result which shows that if the ( $\kappa -1$ )-Fourier uniformity conjecture holds then the Liouville function does not correlate with sequences with $O(n^{t-\varepsilon })$ many words of length n where $t = \kappa (\kappa +1)/2$ . We prove a variant of the $1$ -Fourier uniformity conjecture where the frequencies are restricted to any set of box dimension less than $1$ .



Author(s):  
Jiahao Qiu ◽  
Jianjie Zhao

AbstractIn this paper, it is shown that for a minimal system (X, G), if H is a normal subgroup of G with finite index n, then X can be decomposed into n components of closed sets such that each component is minimal under H-action. Meanwhile, we prove that for a residual set of points in a minimal system with finitely many commuting homeomorphisms, the set of return times to any non-empty open set contains arbitrarily long geometric progressions in multidimension, extending a previous result by Glasscock, Koutsogiannis and Richter.



2021 ◽  
Vol 15 (3) ◽  
Author(s):  
André C. M. Ran ◽  
Michał Wojtylak

AbstractGeneral properties of eigenvalues of $$A+\tau uv^*$$ A + τ u v ∗ as functions of $$\tau \in {\mathbb {C} }$$ τ ∈ C or $$\tau \in {\mathbb {R} }$$ τ ∈ R or $$\tau ={{\,\mathrm{{e}}\,}}^{{{\,\mathrm{{i}}\,}}\theta }$$ τ = e i θ on the unit circle are considered. In particular, the problem of existence of global analytic formulas for eigenvalues is addressed. Furthermore, the limits of eigenvalues with $$\tau \rightarrow \infty $$ τ → ∞ are discussed in detail. The following classes of matrices are considered: complex (without additional structure), real (without additional structure), complex H-selfadjoint and real J-Hamiltonian.



Author(s):  
R. Krishna Kumari ◽  
R. Arulprakasam ◽  
V. R. Dare


2002 ◽  
Vol 117 (1-3) ◽  
pp. 149-161 ◽  
Author(s):  
Vadim E. Levit ◽  
Eugen Mandrescu




1987 ◽  
Vol 16 (1) ◽  
pp. 59-73 ◽  
Author(s):  
Grzegorz Rozenberg ◽  
Emo Welzl


Sign in / Sign up

Export Citation Format

Share Document