F-structures, F-twistor spaces and harmonic maps

Author(s):  
John H. Rawnsley
Keyword(s):  
Author(s):  
Francis E. Burstall ◽  
John H. Rawnsley
Keyword(s):  

Author(s):  
Florian Beck ◽  
Sebastian Heller ◽  
Markus Röser

Abstract We study a natural functional on the space of holomorphic sections of the Deligne–Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We show that the energy is the residue of the pull-back along the section of a natural meromorphic connection on the hyperholomorphic line bundle recently constructed by Hitchin. As a byproduct, we show the existence of a hyper-Kähler potentials for new components of real holomorphic sections of twistor spaces of hyper-Kähler manifolds with rotating $$S^1$$ S 1 -action. Additionally, we prove that for a certain class of real holomorphic sections of the Deligne–Hitchin moduli space, the energy functional is basically given by the Willmore energy of corresponding equivariant conformal map to the 3-sphere. As an application we use the functional to distinguish new components of real holomorphic sections of the Deligne–Hitchin moduli space from the space of twistor lines.


1993 ◽  
Vol 48 (3) ◽  
pp. 1-91 ◽  
Author(s):  
J Davidov ◽  
A G Sergeev
Keyword(s):  

2021 ◽  
Vol 8 (1) ◽  
pp. 96-124
Author(s):  
Luis Fernando Hernández-Moguel ◽  
Rafael Herrera

Abstract Motivated by the recent interest in even-Clifford structures and in generalized complex and quaternionic geometries, we introduce the notion of generalized almost even-Clifford structure. We generalize the Arizmendi-Hadfield twistor space construction on even-Clifford manifolds to this setting and show that such a twistor space admits a generalized complex structure under certain conditions.


2020 ◽  
Vol 7 (1) ◽  
pp. 129-140
Author(s):  
Robert Ream

AbstractIn this paper we study an analog of minimal surfaces called Weyl-minimal surfaces in conformal manifolds with a Weyl connection (M4, c, D). We show that there is an Eells-Salamon type correspondence between nonvertical 𝒥-holomorphic curves in the weightless twistor space and branched Weyl-minimal surfaces. When (M, c, J) is conformally almost-Hermitian, there is a canonical Weyl connection. We show that for the canonical Weyl connection, branched Weyl-minimal surfaces satisfy the adjunction inequality\chi \left( {{T_f}\sum } \right) + \chi \left( {{N_f}\sum } \right) \le \pm {c_1}\left( {f*{T^{\left( {1,0} \right)}}M} \right).The ±J-holomorphic curves are automatically Weyl-minimal and satisfy the corresponding equality. These results generalize results of Eells-Salamon and Webster for minimal surfaces in Kähler 4-manifolds as well as their extension to almost-Kähler 4-manifolds by Chen-Tian, Ville, and Ma.


Sign in / Sign up

Export Citation Format

Share Document