Pseudoorthogonality of powers of the coordinates of a holomorphic mapping in two variables with the constant Jacobian

Author(s):  
Zygnunt Charzyński ◽  
Przemysław Skibiński
Keyword(s):  

1968 ◽  
Vol 33 ◽  
pp. 85-106 ◽  
Author(s):  
Hirotaka Fujimoto

For a complex space X we consider the group Aut (X) of all automorphisms of X, where an automorphism means a holomorphic automorphism, i.e. an injective holomorphic mapping of X onto X itself with the holomorphic inverse. In 1935, H. Cartan showed that Aut (X) has a structure of a real Lie group if X is a bounded domain in CN([7]) and, in 1946, S. Bochner and D. Montgomery got the analogous result for a compact complex manifold X ([2] and [3]). Afterwards, the latter was generalized by R.C. Gunning ([11]) and H. Kerner ([16]), and the former by W. Kaup ([14]), to complex spaces. The purpose of this paper is to generalize these results to the case of complex spaces with weaker conditions. For brevity, we restrict ourselves to the study of σ-compact irreducible complex spaces only.



1999 ◽  
Vol 154 ◽  
pp. 57-72 ◽  
Author(s):  
Bernard Coupet ◽  
Yifei Pan ◽  
Alexandre Sukhov

AbstractWe describe the branch locus of a proper holomorphic mapping between two smoothly bounded pseudoconvex domains of finite type in under the assumption that the first domain admits a transversal holomorphic action of the unit circle. As an application we show that any proper holomorphic self-mapping of a smoothly bounded pseudoconvex complete circular domain of finite type in is biholomorphic.



1959 ◽  
Vol 14 ◽  
pp. 173-191
Author(s):  
Yoshio Togari

Let ϕ be a holomorphic mapping of an n-dimensional analytic space E into Cn. If ϕ is non-degenerate at every point of E, we call the pair (E, ϕ) a Riemann domain. The notion of a Riemann domain is a generalization of the notion of a concrete Riemann surface. A Riemann domain (E, ϕ) is said to be unramified if ϕ is a local homeomorphism, and to be ramified if otherwise.



1975 ◽  
Vol 27 (2) ◽  
pp. 446-458 ◽  
Author(s):  
Kyong T. Hahn

This paper is to study various properties of holomorphic mappings defined on the unit ball B in the complex euclidean space Cn with ranges in the space Cm. Furnishing B with the standard invariant Kähler metric and Cm with the ordinary euclidean metric, we define, for each holomorphic mapping f : B → Cm, a pair of non-negative continuous functions qf and Qf on B ; see § 2 for the definition.Let (Ω), Ω > 0, be the family of holomorphic mappings f : B → Cn such that Qf(z) ≦ Ω for all z ∈ B. (Ω) contains the family (M) of bounded holomorphic mappings as a proper subfamily for a suitable M > 0.





1990 ◽  
Vol 120 ◽  
pp. 171-180
Author(s):  
Peichu Hu

This announcement is a continuation of Hu [3]. Our results improve Theorem 1 of [3], but the latter is needed in the proof of the former.Let f: M → N be a holomorphic mapping from a connected complex manifold M of dimension m to a projective algebraic manifold N of dimension n.



Author(s):  
Paul Baird ◽  
John C. Wood

AbstractA complete classification is given of harmonic morphisms to a surface and conformal foliations by geodesics, with or without isolated singularities, of a simply-connected space form. The method is to associate to any such a holomorphic map from a Riemann surface into the space of geodesics of the space form. Properties such as nonintersecting fibres (or leaves) are translated into conditions on the holomorphic mapping which show it must have a simple form corresponding to a standard example.



1986 ◽  
Vol 29 (3) ◽  
pp. 358-364
Author(s):  
Yoshihisa Kubota

AbstractLet F be a bounded holomorphic mapping defined on a bounded homogeneous domain in ℂN. We study the relation between the Jacobian JF(z) and the radius dF(z) of uni valence of F.



1981 ◽  
Vol 84 ◽  
pp. 209-218
Author(s):  
Yoshihiro Aihara ◽  
Seiki Mori

The famous Picard theorem states that a holomorphic mapping f: C → P1(C) omitting distinct three points must be constant. Borel [1] showed that a non-degenerate holomorphic curve can miss at most n + 1 hyperplanes in Pn(C) in general position, thus extending Picard’s theorem (n = 1). Recently, Fujimoto [3], Green [4] and [5] obtained many Picard type theorems using Borel’s methods for holomorphic mappings.





Sign in / Sign up

Export Citation Format

Share Document