A maximum principle for a class of functionals in nonlinear dirichlet problems

Author(s):  
Philip W. Schaefer ◽  
René P. Sperb
2021 ◽  
Vol 3 (3) ◽  
pp. 1-9
Author(s):  
Lucio Boccardo ◽  
◽  
◽  
◽  

2020 ◽  
Vol 20 (2) ◽  
pp. 503-510
Author(s):  
Lucio Boccardo ◽  
Luigi Orsina

AbstractIn this paper, dedicated to Laurent Veron, we prove that the Strong Maximum Principle holds for solutions of some quasilinear elliptic equations having lower order terms with quadratic growth with respect to the gradient of the solution.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Feng Xiong ◽  
Zhan Zhou

AbstractThis paper derives several sufficient conditions for the existence of three solutions to the Dirichlet problem for a second-order self-adjoint difference equation involving p-Laplacian through the critical point theory. Furthermore, by using the strong maximum principle, we prove that the three solutions are positive under appropriate assumptions on the nonlinearity. Finally, we present three examples to confirm our results.


2017 ◽  
Vol 17 (03) ◽  
pp. 1750039 ◽  
Author(s):  
Kenan Yildirim ◽  
Seda G. Korpeoglu ◽  
Ismail Kucuk

Optimal boundary control for damping the vibrations in a Mindlin-type beam is considered. Wellposedness and controllability of the system are investigated. A maximum principle is introduced and optimal control function is obtained by means of maximum principle. Also, by using maximum principle, control problem is reduced to solving a system of partial differential equations including state, adjoint variables, which are subject to initial, boundary and terminal conditions. The solution of the system is obtained by using MATLAB. Numerical results are presented in table and graphical forms.


1967 ◽  
Vol 18 (3) ◽  
pp. 332-333
Author(s):  
K. B. Haley
Keyword(s):  

2020 ◽  
Vol 10 (1) ◽  
pp. 895-921
Author(s):  
Daniele Cassani ◽  
Luca Vilasi ◽  
Youjun Wang

Abstract In this paper we study a class of one-parameter family of elliptic equations which combines local and nonlocal operators, namely the Laplacian and the fractional Laplacian. We analyze spectral properties, establish the validity of the maximum principle, prove existence, nonexistence, symmetry and regularity results for weak solutions. The asymptotic behavior of weak solutions as the coupling parameter vanishes (which turns the problem into a purely nonlocal one) or goes to infinity (reducing the problem to the classical semilinear Laplace equation) is also investigated.


Sign in / Sign up

Export Citation Format

Share Document