scholarly journals Invisible decays of axion-like particles: constraints and prospects

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Luc Darmé ◽  
Federica Giacchino ◽  
Enrico Nardi ◽  
Mauro Raggi

Abstract Axion-like particles (ALPs) can provide a portal to new states of a dark sector. We study the phenomenology of this portal when the ALP mainly decays invisibly, while its interaction with the standard model sector proceeds essentially via its coupling to electrons and/or photons. We reanalyse existing limits from various collider and beam dump experiments, including in particular ALP production via electron/positron interactions, in addition to the usual production through ALP-photon coupling. We further discuss the interplay between these limits and the intriguing possibility of explaining simultaneously the muon and electron magnetic moment anomalies. Finally, we illustrate the prospects of ALP searches at the LNF positron fixed-target experiment PADME, and the future reach of an upgraded experimental setup.

2018 ◽  
Vol 182 ◽  
pp. 02002
Author(s):  
Riccardo Aliberti

Flavour physics is one of the most powerful fields for the search of new physics beyond the Standard Model. The kaon sector with the rare decay K+ → π+νν̅ provides one of the cleanest and most promising channels. NA62, a fixed target experiment at the CERN SPS, aims to measure BR (K+ → π+νν̅) with 10% precision to test the Standard Model validity up to an energy scale of hundreds of TeV. NA62 had dedicated data taking for the K+ → π+νν̅ measurement in 2016 and 2017 and will continue in 2018. Here preliminary results on a fraction of 2016 dataset are presented. The analysis of the complete 2016 data sample is expected to achieve the SM sensitivity.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Paolo Ciafaloni ◽  
Gabriele Martelli ◽  
Mauro Raggi

Abstract Electron positron collisions are a very promising environment to search for new physics, and in particular for dark sector related observables. The most challenging experimental problem in detecting dark sector candidates is the very high associated Standard Model background. For this reason it is important to identify observables that are, at the same time, minimally suppressed in the dark sector and highly suppressed in the Standard Model. One example is the e+e− → 3(e+e−) process that can be mediated either by the production and subsequent decay of dark Higgs (h′), e+e− → A′h′ → 6e [1] or produced by the Standards Model process e+e− → 3(e+e−). In the following letter we study the relative contribution to observed e+e− → 3(e+e−) total cross section, coming from the h′ mediated and from the Standard Model processes in the contest of fixed target and low energy collider experiments, with particular attention to the PADME experiment at the INFN Laboratori Nazionali di Frascati.


2014 ◽  
Vol 45 (1) ◽  
pp. 336-337 ◽  
Author(s):  
A. Rakotozafindrabe ◽  
M. Anselmino ◽  
R. Arnaldi ◽  
S. J. Brodsky ◽  
V. Chambert ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-15 ◽  
Author(s):  
L. Massacrier ◽  
B. Trzeciak ◽  
F. Fleuret ◽  
C. Hadjidakis ◽  
D. Kikola ◽  
...  

Being used in the fixed-target mode, the multi-TeV LHC proton and lead beams allow for studies of heavy-flavour hadroproduction with unprecedented precision at backward rapidities, far negative Feynman-x, using conventional detection techniques. At the nominal LHC energies, quarkonia can be studied in detail inp+p,p+d, andp+Acollisions atsNN≃115 GeV and in Pb +pand Pb +Acollisions atsNN≃72 GeV with luminosities roughly equivalent to that of the collider mode that is up to 20 fb−1 yr−1inp+pandp+dcollisions, up to 0.6 fb−1 yr−1inp+Acollisions, and up to 10 nb−1 yr−1in Pb +Acollisions. In this paper, we assess the feasibility of such studies by performing fast simulations using the performance of a LHCb-like detector.


2013 ◽  
Author(s):  
Jean-Philippe Lansberg ◽  
Valérie Chambert ◽  
Jean-Pierre Didelez ◽  
Bernard Genolini ◽  
Cynthia Hadjidakis ◽  
...  

2012 ◽  
Author(s):  
Jean-Philippe Lansberg ◽  
Valérie Chambert ◽  
Jean-Pierre Didelez ◽  
Bernard Genolini ◽  
Cynthia Hadjidakis ◽  
...  

2017 ◽  
Vol 58 (4) ◽  
Author(s):  
Daniel Kikoła ◽  
Miguel García Echevarria ◽  
Cynthia Hadjidakis ◽  
Jean-Philippe Lansberg ◽  
Cédric Lorcé ◽  
...  

2018 ◽  
Vol 191 ◽  
pp. 05002 ◽  
Author(s):  
Evgeny Andronov

NA61/SHINE is a fixed target experiment operating at the CERN SPS. Its main goals are to search for the critical point of strongly interacting matter and to study the onset of deconfinement. For these goals a scan of the two dimensional phase diagram (T-μB) is being performed at the SPS by measurements of hadron production in proton-proton, proton-nucleus and nucleusnucleus interactions as a function of collision energy. In this paper the status of the NA61/SHINE strong interaction physics programme is presented including recent results on proton intermittency, strongly intensive fluctuation observables of multiplicity and transverse momentum fluctuations. These measurements are expected to be sensitive to the correlation length in the produced matter and, therefore, have the ability to reveal the existence of the critical point via possible non-monotonic behavior. The NA61/SHINE results are compared to the model predictions.


Sign in / Sign up

Export Citation Format

Share Document