hadron production
Recently Published Documents


TOTAL DOCUMENTS

800
(FIVE YEARS 79)

H-INDEX

57
(FIVE YEARS 6)

2022 ◽  
Vol 258 ◽  
pp. 05010
Author(s):  
Mariia Mitrankova ◽  
Alexander Berdnikov ◽  
Yaroslav Berdnikov ◽  
Dmitry Kotov ◽  
Iurii Mitrankov

The measurements of light hadron production in small collision systems (such as p+Al, p+Au, d+Au, 3He+Au) may allow to explore the quarkgluon plasma formation and to determine the main hadronization mechanism in the considered collisions. Such research has become particularly crucial with the observation of the light hadrons collective behavior in p/d/3He+Au collisions at √SNN = 200 GeV and in p+Al collisions at the same energy at forward and backward rapidities. Among the large variety of light hadrons, ϕ meson is of particular interest since its production is sensitive to the presence of the quark-gluon plasma. The paper presents the comparison of the obtained experimental results on ϕ meson production to different light hadron production in p+Al and 3He+Au at √SNN = 200 GeV at midrapidity. The comparisons of ϕ meson production in p+Al, p+Au, d+Au, and 3He+Au collisions at √SNN = 200 GeV at midrapidity to theoretical models predictions (PYTHIA model and default and string melting versions of the AMPT model) are also provided. The results suggest that the QGP can be formed in p/d/3He+Au collisions, but the volume and lifetime of the produced medium might be insufficient for observation of strangeness enhancement effect. Conceivably, the main hadronization mechanism of ϕ meson production in p+Al collisions is fragmentation, while in p/d/3He+Au collisions this process occurs via coalescence.


2022 ◽  
Vol 258 ◽  
pp. 05007
Author(s):  
Wojciech Bryliński ◽  

NA61/SHINE (SPS Heavy Ion and Neutrino Experiment) is a fixedtarget experiment operating at the CERN SPS accelerator. The main goal of the strong interactions program of NA61/SHINE is to study the properties of the phase transition between confined matter and quark-gluon plasma by performing a two-dimensional scan in beam momentum and size of collided nuclei. Within this program, collisions of different systems (p+p, p+Pb, Be+Be, Ar+Sc, Xe+La, Pb+Pb) over a wide range of beam momenta (13A-150(8)A GeV/c) have been recorded. This contribution discusses the latest results of hadron production in p+p, Be+Be, Ar+Sc and Pb+Pb reactions measured by the NA61/SHINE. In particular, the results include charged kaons and pions spectra and higher-order moments of multiplicity and net charge distributions. The presented data are compared with the predictions of different theoretical models as well as the results from other experiments. Finally, the motivation and plans for future NA61/SHINE measurements are discussed.


2021 ◽  
Vol 104 (9) ◽  
Author(s):  
P. Duwentäster ◽  
L. A. Husová ◽  
T. Ježo ◽  
M. Klasen ◽  
K. Kovařík ◽  
...  

2021 ◽  
Author(s):  
Mattia Faggin ◽  
Keyword(s):  

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Umberto D’Alesio ◽  
Francesco Murgia ◽  
Marco Zaccheddu

Abstract We present the complete leading-order results for the azimuthal dependences and polarization observables in e+e−→ h1h2 + X processes, where the two hadrons are produced almost back-to-back, within a transverse momentum dependent (TMD) factorization scheme. We consider spinless (or unpolarized) and spin-1/2 hadron production and give the full set of the corresponding quark and gluon TMD fragmentation functions (TMD-FFs). By adopting the helicity formalism, which allows for a more direct probabilistic interpretation, single- and double-polarization cases are discussed in detail. Simplified expressions, useful for phenomenological analyses, are obtained by assuming a factorized Gaussian-like dependence on intrinsic transverse momenta for the TMD-FFs.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
◽  
R. Aaij ◽  
A. S. W. Abdelmotteleb ◽  
C. Abellán Beteta ◽  
T. Ackernley ◽  
...  

Abstract This article presents differential measurements of the asymmetry between $$ {\varLambda}_b^0 $$ Λ b 0 and $$ {\overline{\varLambda}}_b^0 $$ Λ ¯ b 0 baryon production rates in proton-proton collisions at centre-of-mass energies of $$ \sqrt{s} $$ s = 7 and 8 TeV collected with the LHCb experiment, corresponding to an integrated luminosity of 3 fb−1. The $$ {\varLambda}_b^0 $$ Λ b 0 baryons are reconstructed through the inclusive semileptonic decay $$ {\varLambda}_b^0 $$ Λ b 0 → $$ {\varLambda}_c^{+} $$ Λ c + μ−$$ \overline{\nu} $$ ν ¯ μX. The production asymmetry is measured both in intervals of rapidity in the range 2.15 < y < 4.10 and transverse momentum in 2 < pT< 27 GeV/c. The results are found to be incompatible with symmetric production with a significance of 5.8 standard deviations for both $$ \sqrt{s} $$ s = 7 and 8 TeV data, assuming no CP violation in the decay. There is evidence for a trend as a function of rapidity with a significance of 4 standard deviations. Comparisons to predictions from hadronisation models in Pythia and heavy-quark recombination are provided. This result constitutes the first observation of a particle-antiparticle asymmetry in b-hadron production at LHC energies.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Michał Czakon ◽  
Terry Generet ◽  
Alexander Mitov ◽  
Rene Poncelet

Abstract We calculate, for the first time, the NNLO QCD corrections to identified heavy hadron production at hadron colliders. The calculation is based on a flexible numeric framework which allows the calculation of any distribution of a single identified heavy hadron plus jets and non-QCD particles. As a first application we provide NNLO QCD predictions for several differential distributions of B hadrons in t$$ \overline{t} $$ t ¯ events at the LHC. Among others, these predictions are needed for the precise determination of the top quark mass. The extension of our results to other processes, like open or associated B and charm production is straightforward. We also explore the prospects for extracting heavy flavor fragmentation functions from LHC data.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
S. Dytman ◽  
Y. Hayato ◽  
R. Raboanary ◽  
J. T. Sobczyk ◽  
J. Tena-Vidal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document