scholarly journals Orthosymplectic implosions

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
Antoine Bourget ◽  
Andrew Dancer ◽  
Julius F. Grimminger ◽  
Amihay Hanany ◽  
Frances Kirwan ◽  
...  

Abstract We propose quivers for Coulomb branch constructions of universal implosions for orthogonal and symplectic groups, extending the work on special unitary groups in [1]. The quivers are unitary-orthosymplectic as opposed to the purely unitary quivers in the A-type case. Where possible we check our proposals using Hilbert series techniques.

2021 ◽  
Vol 11 (2) ◽  
Author(s):  
Guillermo Arias Tamargo ◽  
Antoine Bourget ◽  
Alessandro Pini

We analyse the Higgs branch of 4d \mathcal{N}=2𝒩=2 SQCD gauge theories with non-connected gauge groups \widetilde{\mathrm{SU}}(N) = \mathrm{SU}(N) \rtimes_{I,II} \mathbb{Z}_2SŨ(N)=SU(N)⋊I,IIℤ2 whose study was initiated in . We derive the Hasse diagrams corresponding to the Higgs mechanism using adapted characters for representations of non-connected groups. We propose 3d \mathcal{N}=4𝒩=4 magnetic quivers for the Higgs branches in the type II discrete gauging case, in the form of recently introduced wreathed quivers, and provide extensive checks by means of Coulomb branch Hilbert series computations.


2014 ◽  
Vol 2014 (9) ◽  
Author(s):  
Stefano Cremonesi ◽  
Amihay Hanany ◽  
Noppadol Mekareeya ◽  
Alberto Zaffaroni

2006 ◽  
Vol 299 (1) ◽  
pp. 443-446 ◽  
Author(s):  
Robert M. Guralnick ◽  
Kay Magaard ◽  
Jan Saxl ◽  
Pham Huu Tiep

2014 ◽  
Vol 2014 (9) ◽  
Author(s):  
Stefano Cremonesi ◽  
Amihay Hanany ◽  
Noppadol Mekareeya ◽  
Alberto Zaffaroni

2003 ◽  
Vol 14 (05) ◽  
pp. 461-477
Author(s):  
Jian Zhou

We prove a double coset formula for induced representations of compact Lie groups. We apply it to the representation rings of unitary and symplectic groups to obtain Hopf algebras. We also construct a Heisenberg algebra representation based on the restiction and induction of representations of unitary groups.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Antoine Bourget ◽  
Julius F. Grimminger ◽  
Amihay Hanany ◽  
Rudolph Kalveks ◽  
Marcus Sperling ◽  
...  

Abstract For any gauge theory, there may be a subgroup of the gauge group which acts trivially on the matter content. While many physical observables are not sensitive to this fact, the choice of the precise gauge group becomes crucial when the magnetic lattice of the theory is considered. This question is addressed in the context of Coulomb branches for 3d $$ \mathcal{N} $$ N = 4 quiver gauge theories, which are moduli spaces of dressed monopole operators. We compute the Coulomb branch Hilbert series of many unitary-orthosymplectic quivers for different choices of gauge groups, including diagonal quotients of the product gauge group of individual factors, where the quotient is by a trivially acting subgroup. Choosing different such diagonal groups results in distinct Coulomb branches, related as orbifolds. Examples include nilpotent orbit closures of the exceptional E-type algebras and magnetic quivers that arise from brane physics. This includes Higgs branches of theories with 8 supercharges in dimensions 4, 5, and 6. A crucial ingredient in the calculation of exact refined Hilbert series is the alternative construction of unframed magnetic quivers from resolved Slodowy slices, whose Hilbert series can be derived from Hall-Littlewood polynomials.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Mohammad Akhond ◽  
Federico Carta

Abstract We consider the Higgs branch of 5d fixed points engineered using brane webs with an O7+-plane. We use the brane construction to propose a set of rules to extract the corresponding magnetic quivers. Such magnetic quivers are generically framed non-simply-laced quivers containing unitary as well as special unitary gauge nodes. We compute the Coulomb branch Hilbert series of the proposed magnetic quivers. In some specific cases, an alternative magnetic quiver can be obtained either using an ordinary brane web or a brane web with an O5-plane. In these cases, we find a match at the level of the Hilbert series.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Mohammad Akhond ◽  
Federico Carta ◽  
Siddharth Dwivedi ◽  
Hirotaka Hayashi ◽  
Sung-Soo Kim ◽  
...  

Abstract We study the moduli space of 3d $$ \mathcal{N} $$ N = 4 quiver gauge theories with unitary, orthogonal and symplectic gauge nodes, that fall into exceptional sequences. We find that both the Higgs and Coulomb branches of the moduli space factorise into decoupled sectors. Each decoupled sector is described by a single quiver gauge theory with only unitary gauge nodes. The orthosymplectic quivers serve as magnetic quivers for 5d $$ \mathcal{N} $$ N = 1 superconformal field theories which can be engineered in type IIB string theories both with and without an O5 plane. We use this point of view to postulate the dual pairs of unitary and orthosymplectic quivers by deriving them as magnetic quivers of the 5d theory. We use this correspondence to conjecture exact highest weight generating functions for the Coulomb branch Hilbert series of the orthosymplectic quivers, and provide tests of these results by directly computing the Hilbert series for the orthosymplectic quivers in a series expansion.


10.37236/1729 ◽  
2003 ◽  
Vol 10 (1) ◽  
Author(s):  
Graham Denham

Let $a_1,\ldots,a_n$ be distinct, positive integers with $(a_1,\ldots,a_n)=1$, and let k be an arbitrary field. Let $H(a_1,\ldots,a_n;z)$ denote the Hilbert series of the graded algebra k$[t^{a_1},t^{a_2},\ldots,t^{a_n}]$. We show that, when $n=3$, this rational function has a simple expression in terms of $a_1,a_2,a_3$; in particular, the numerator has at most six terms. By way of contrast, it is known that no such expression exists for any $n\geq4$.


2018 ◽  
Vol 2020 (13) ◽  
pp. 3902-3926
Author(s):  
Réda Boumasmoud ◽  
Ernest Hunter Brooks ◽  
Dimitar P Jetchev

Abstract We consider cycles on three-dimensional Shimura varieties attached to unitary groups, defined over extensions of a complex multiplication (CM) field $E$, which appear in the context of the conjectures of Gan et al. [6]. We establish a vertical distribution relation for these cycles over an anticyclotomic extension of $E$, complementing the horizontal distribution relation of [8], and use this to define a family of norm-compatible cycles over these fields, thus obtaining a universal norm construction similar to the Heegner $\Lambda $-module constructed from Heegner points.


Sign in / Sign up

Export Citation Format

Share Document