unitary gauge
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 10)

H-INDEX

11
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
pp. 020
Author(s):  
Antonio De Felice ◽  
Shinji Mukohyama ◽  
Kazufumi Takahashi

Abstract We study U-DHOST theories, i.e., higher-order scalar-tensor theories which are degenerate only in the unitary gauge and yield an apparently unstable extra mode in a generic coordinate system. We show that the extra mode satisfies a three-dimensional elliptic differential equation on a spacelike hypersurface, and hence it does not propagate. We clarify how to treat this “shadowy” mode at both the linear and the nonlinear levels.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Antoine Bourget ◽  
Julius F. Grimminger ◽  
Amihay Hanany ◽  
Rudolph Kalveks ◽  
Marcus Sperling ◽  
...  

Abstract Folding identical legs of a simply-laced quiver creates a quiver with a non-simply laced edge. So far, this has been explored for quivers containing unitary gauge groups. In this paper, orthosymplectic quivers are folded, giving rise to a new family of quivers. This is realised by intersecting orientifolds in the brane system. The monopole formula for these non-simply laced orthosymplectic quivers is introduced. Some of the folded quivers have Coulomb branches that are closures of minimal nilpotent orbits of exceptional algebras, thus providing a new construction of these fundamental moduli spaces. Moreover, a general family of folded orthosymplectic quivers is shown to be a new magnetic quiver realisation of Higgs branches of 4d $$ \mathcal{N} $$ N = 2 theories. The Hasse (phase) diagrams of certain families are derived via quiver subtraction as well as Kraft-Procesi transitions in the brane system.


2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Mohammad Akhond ◽  
Federico Carta

Abstract We consider the Higgs branch of 5d fixed points engineered using brane webs with an O7+-plane. We use the brane construction to propose a set of rules to extract the corresponding magnetic quivers. Such magnetic quivers are generically framed non-simply-laced quivers containing unitary as well as special unitary gauge nodes. We compute the Coulomb branch Hilbert series of the proposed magnetic quivers. In some specific cases, an alternative magnetic quiver can be obtained either using an ordinary brane web or a brane web with an O5-plane. In these cases, we find a match at the level of the Hilbert series.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Anindya Dey

Abstract Mirror symmetry, a three dimensional $$ \mathcal{N} $$ N = 4 IR duality, has been studied in detail for quiver gauge theories of the ADE-type (as well as their affine versions) with unitary gauge groups. The A-type quivers (also known as linear quivers) and the associated mirror dualities have a particularly simple realization in terms of a Type IIB system of D3-D5-NS5-branes. In this paper, we present a systematic field theory prescription for constructing 3d mirror pairs beyond the ADE quiver gauge theories, starting from a dual pair of A-type quivers with unitary gauge groups. The construction involves a certain generalization of the S and the T operations, which arise in the context of the SL(2, ℤ) action on a 3d CFT with a U(1) 0-form global symmetry. We implement this construction in terms of two supersymmetric observables — the round sphere partition function and the superconformal index on S2 × S1. We discuss explicit examples of various (non-ADE) infinite families of mirror pairs that can be obtained in this fashion. In addition, we use the above construction to conjecture explicit 3d $$ \mathcal{N} $$ N = 4 Lagrangians for 3d SCFTs, which arise in the deep IR limit of certain Argyres-Douglas theories compactified on a circle.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Simone Giacomelli ◽  
Noppadol Mekareeya ◽  
Matteo Sacchi

Abstract Argyres-Douglas (AD) theories constitute an infinite class of superconformal field theories in four dimensions with a number of interesting properties. We study several new aspects of AD theories engineered in A-type class $$ \mathcal{S} $$ S with one irregular puncture of Type I or Type II and also a regular puncture. These include conformal manifolds, structures of the Higgs branch, as well as the three dimensional gauge theories coming from the reduction on a circle. We find that the latter admits a description in terms of a linear quiver with unitary and special unitary gauge groups, along with a number of twisted hypermultiplets. The origin of these twisted hypermultiplets is explained from the four dimensional perspective. We also propose the three dimensional mirror theories for such linear quivers. These provide explicit descriptions of the magnetic quivers of all the AD theories in question in terms of quiver diagrams with unitary gauge groups, together with a collection of free hypermultiplets. A number of quiver gauge theories presented in this paper are new and have not been studied elsewhere in the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Yunlong Zheng

Abstract Two types of mimetic gravity models with higher derivatives of the mimetic field are analyzed in the Hamiltonian formalism. For the first type of mimetic gravity, the Ricci scalar only couples to the mimetic field and we demonstrate the number of degrees of freedom (DOFs) is three. Then in both Einstein frame and Jordan frame, we perform the Hamiltonian analysis for the extended mimetic gravity with higher derivatives directly coupled to the Ricci scalar. We show that different from previous studies working at the cosmological perturbation level, where only three propagating DOFs show up, this generalized mimetic model, in general, has four DOFs. To understand this discrepancy, we consider the unitary gauge and find out that the number of DOFs reduces to three. We conclude that the reason why this system looks peculiar is that the Dirac matrix of all secondary constraints becomes singular in the unitary gauge, resulting in extra secondary constraints and thus reducing the number of DOFs. Furthermore, we give a simple example of a dynamic system to illustrate how gauge choice can affect the number of secondary constraints as well as the DOFs when the rank of the Dirac matrix is gauge dependent.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Andrés Collinucci ◽  
Roberto Valandro

Abstract We propose a string theory realization of three-dimensional $$ \mathcal{N} $$ N = 4 quiver gauge theories with special unitary gauge groups. This is most easily understood in type IIA string theory with D4-branes wrapped on holomorphic curves in local K3’s, by invoking the Stückelberg mechanism. From the type IIB perspective, this is understood as simply compactifying the familiar Hanany-Witten (HW) constructions on a T3. The mirror symmetry duals are easily derived. We illustrate this with various examples of mirror pairs.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Ken Sasaki

Abstract The contribution to the muon anomalous magnetic moment from the fermion triangle loop diagrams connected to the muon line by a photon and a $Z$ boson is re-analyzed in both the unitary gauge and the ’t Hooft–Feynman gauge. With use of the anomalous axial-vector Ward identity, it is shown that the calculation in the unitary gauge exactly coincides with the one in the ’t Hooft–Feynman gauge. The part which arises from the ordinary axial-vector Ward identity corresponds to the contribution of the neutral Goldstone boson. For the top-quark contribution, the one-parameter integral form is obtained up to the order of $m_\mu^2/m_Z^2$. The results are compared with those obtained by the asymptotic expansion method.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Dražen Glavan ◽  
Anja Marunović ◽  
Tomislav Prokopec ◽  
Zahra Zahraee

Abstract We consider the Abelian Higgs model in the broken phase as a spectator in cosmological spaces of general D space-time dimensions, and allow for the condensate to be time-dependent. We fix the unitary gauge using Dirac’s formalism for constrained systems, and then quantize the gauge-fixed system. Vector and scalar perturbations develop time­dependent masses. We work out their propagators assuming the cosmological background is that of power-law inflation, characterized by a constant principal slow-roll parameter, and that the scalar condensate is in the attractor regime, scaling as the Hubble rate. Our propagators correctly reduce to known results in the Minkowski and de Sitter space limits. We use the vector propagator to compute the equal-time correlators of electric and magnetic fields and find that at super-Rubble separations the former is enhanced, while the latter is suppressed compared to the vacuum fluctuations of the massless vector field. These correlators satisfy the hierarchy governed by Faraday’s law.


Sign in / Sign up

Export Citation Format

Share Document