scholarly journals The amplitude for classical gravitational scattering at third Post-Minkowskian order

2021 ◽  
Vol 2021 (8) ◽  
Author(s):  
N. Emil J. Bjerrum-Bohr ◽  
Poul H. Damgaard ◽  
Ludovic Planté ◽  
Pierre Vanhove

Abstract We compute the scattering amplitude for classical black-hole scattering to third order in the Post-Minkowskian expansion, keeping all terms needed to derive the scattering angle to that order from the eikonal formalism. Our results confirm a conjectured relation between the real and imaginary parts of the amplitude by Di Vecchia, Heissenberg, Russo, and Veneziano, and are in agreement with a recent computation by Damour based on radiation reaction in general relativity.

2015 ◽  
Vol 8 (2) ◽  
pp. 2135-2147 ◽  
Author(s):  
C. Y. Lo

General relativity is incomplete since it does not include the gravitational radiation reaction force and the interaction of gravitation with charged particles. General relativity is confusing because Einstein's covariance principle is invalid in physics. Moreover, there is no bounded dynamic solution for the Einstein equation. Thus, Gullstrand is right and the 1993 Nobel Prize for Physics press release is incorrect. Moreover, awards to Christodoulou reflect the blind faith toward Einstein and accumulated errors in mathematics. Note that the Einstein equation with an electromagnetic wave source has no valid solution unless a photonic energy-stress tensor with an anti-gravitational coupling is added. Thus, the photonic energy includes gravitational energy. The existence of anti-gravity coupling implies that the energy conditions in space-time singularity theorems of Hawking and Penrose cannot be satisfied, and thus are irrelevant. Also, the positive mass theorem of Yau and Schoen is misleading, though considered as an achievement by the Fields Medal. E = mc2 is invalid for the electromagnetic energy alone. The discovery of the charge-mass interaction establishes the need for unification of electromagnetism and gravitation and would explain many puzzles. Experimental investigations for further results are important.


2020 ◽  
Author(s):  
Vitaly Kuyukov

In this paper, we analyze the singularity of a black hole based on a modification of general relativity. There is an equilibrium condition on the Planck scale. This makes it possible to study the thermodynamics of the singularity of a black hole.


Author(s):  
Lawrence H. Starkey

For two centuries Kant's first Critique has nourished various turns against transcendent metaphysics and realism. Kant was scandalized by reason's impotence in confronting infinity (or finitude) as seen in the divisibility of particles and in spatial extension and time. Therefore, he had to regard the latter as subjective and reality as imponderable. In what follows, I review various efforts to rationalize Kant's antinomies-efforts that could only flounder before the rise of Einstein's general relativity and Hawking's blackhole cosmology. Both have undercut the entire Kantian tradition by spawning highly probable theories for suppressing infinities and actually resolving these perplexities on a purely physical basis by positing curvatures of space and even of time that make them reëntrant to themselves. Heavily documented from primary sources in physics, this paper displays time’s curvature as its slowing down near very massive bodies and even freezing in a black hole from which it can reëmerge on the far side, where a new universe can open up. I argue that space curves into a double Möbius strip until it loses one dimension in exchange for another in the twin universe. It shows how 10-dimensional GUTs and the triple Universe, time/charge/parity conservation, and strange and bottom particle families and antiparticle universes, all fit together.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Walter D. Goldberger ◽  
Ira Z. Rothstein

Abstract Using Effective Field Theory (EFT) methods, we compute the effects of horizon dissipation on the gravitational interactions of relativistic binary black hole systems. We assume that the dynamics is perturbative, i.e it admits an expansion in powers of Newton’s constant (post-Minkowskian, or PM, approximation). As applications, we compute corrections to the scattering angle in a black hole collision due to dissipative effects to leading PM order, as well as the post-Newtonian (PN) corrections to the equations of motion of binary black holes in non-relativistic orbits, which represents the leading order finite size effect in the equations of motion. The methods developed here are also applicable to the case of more general compact objects, eg. neutron stars, where the magnitude of the dissipative effects depends on non-gravitational physics (e.g, the equation of state for nuclear matter).


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.


2014 ◽  
Vol 484 ◽  
pp. 012025
Author(s):  
M J Valtonen ◽  
A Gopakumar ◽  
S Mikkola ◽  
K Wiik ◽  
H J Lehto

According to Klein’s Erlanger programme, one may (indirectly) specify a geometry by giving a group action. Conversely, given a group action, one may ask for the corresponding geometry. Recently, I showed that the real asymptotic symmetry groups of general relativity (in any signature) have natural ‘projective’ classical actions on suitable ‘Radon transform’ spaces of affine 3-planes in flat 4-space. In this paper, I give concrete models for these groups and actions. Also, for the ‘atomic’ cases, I give geometric structures for the spaces of affine 3-planes for which the given actions are the automorphism group.


2021 ◽  
Author(s):  
◽  
Del Rajan

<p>In this thesis, we explore the subject of complex spacetimes, in which the mathematical theory of complex manifolds gets modified for application to General Relativity. We will also explore the mysterious Newman-Janis trick, which is an elementary and quite short method to obtain the Kerr black hole from the Schwarzschild black hole through the use of complex variables. This exposition will cover variations of the Newman-Janis trick, partial explanations, as well as original contributions.</p>


Sign in / Sign up

Export Citation Format

Share Document