scholarly journals Driven black holes: from Kolmogorov scaling to turbulent wakes

2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Tomas Andrade ◽  
Christiana Pantelidou ◽  
Julian Sonner ◽  
Benjamin Withers

Abstract General relativity governs the nonlinear dynamics of spacetime, including black holes and their event horizons. We demonstrate that forced black hole horizons exhibit statistically steady turbulent spacetime dynamics consistent with Kolmogorov’s theory of 1941. As a proof of principle we focus on black holes in asymptotically anti-de Sitter spacetimes in a large number of dimensions, where greater analytic control is gained. We focus on cases where the effective horizon dynamics is restricted to 2+1 dimensions. We also demonstrate that tidal deformations of the horizon induce turbulent dynamics. When set in motion relative to the horizon a deformation develops a turbulent spacetime wake, indicating that turbulent spacetime dynamics may play a role in binary mergers and other strong-field phenomena.

2009 ◽  
Vol 5 (S261) ◽  
pp. 260-268
Author(s):  
M. J. Valtonen ◽  
S. Mikkola ◽  
D. Merritt ◽  
A. Gopakumar ◽  
H. J. Lehto ◽  
...  

AbstractSupermassive black holes are common in centers of galaxies. Among the active galaxies, quasars are the most extreme, and their black hole masses range as high as to 6⋅1010M⊙. Binary black holes are of special interest but so far OJ287 is the only confirmed case with known orbital elements. In OJ287, the binary nature is confirmed by periodic radiation pulses. The period is twelve years with two pulses per period. The last four pulses have been correctly predicted with the accuracy of few weeks, the latest in 2007 with the accuracy of one day. This accuracy is high enough that one may test the higher order terms in the Post Newtonian approximation to General Relativity. The precession rate per period is 39°.1 ± 0°.1, by far the largest rate in any known binary, and the (1.83 ± 0.01)⋅1010M⊙primary is among the dozen biggest black holes known. We will discuss the various Post Newtonian terms and their effect on the orbit solution. The over 100 year data base of optical variations in OJ287 puts limits on these terms and thus tests the ability of Einstein's General Relativity to describe, for the first time, dynamic binary black hole spacetime in the strong field regime. The quadrupole-moment contributions to the equations of motion allows us to constrain the ‘no-hair’ parameter to be 1.0 ± 0.3 which supports the black hole no-hair theorem within the achievable precision.


2020 ◽  
Vol 493 (4) ◽  
pp. 5532-5550 ◽  
Author(s):  
D R Wilkins ◽  
C S Reynolds ◽  
A C Fabian

ABSTRACT We explore how X-ray reverberation around black holes may reveal the presence of the innermost stable circular orbit (ISCO), predicted by general relativity, and probe the dynamics of the plunging region between the ISCO and the event horizon. Being able to directly detect the presence of the ISCO and probe the dynamics of material plunging through the event horizon represents a unique test of general relativity in the strong field regime. X-ray reverberation off of the accretion disc and material in the plunging region is modelled using general relativistic ray tracing simulations. X-ray reverberation from the plunging region has a minimal effect on the time-averaged X-ray spectrum and the overall lag-energy spectrum, but is manifested in the lag in the highest frequency Fourier components, above $0.01\, c^{3}\, (GM)^{-1}$ (scaled for the mass of the black hole) in the 2–4 keV energy band for a non-spinning black hole or the 1–2 keV energy band for a maximally spinning black hole. The plunging region is distinguished from disc emission not just by the energy shifts characteristic of plunging orbits, but by the rapid increase in ionization of material through the plunging region. Detection requires measurement of time lags to an accuracy of 20 per cent at these frequencies. Improving accuracy to 12 per cent will enable constraints to be placed on the dynamics of material in the plunging region and distinguish plunging orbits from material remaining on stable circular orbits, confirming the existence of the ISCO, a prime discovery space for future X-ray missions.


Author(s):  
S. I. Kruglov

A modified Hayward metric of magnetically charged black hole space–time based on rational nonlinear electrodynamics with the Lagrangian [Formula: see text] is considered. We introduce the fundamental length, characterizing quantum gravity effects. If the fundamental length vanishes the general relativity coupling to rational nonlinear electrodynamics is recovered. We obtain corrections to the Reissner–Nordström solution as the radius approaches infinity. The metric possesses a de Sitter core without singularities as [Formula: see text]. The Hawking temperature and the heat capacity are calculated. It was shown that phase transitions occur and black holes are thermodynamically stable at some event horizon radii. We demonstrate that curvature invariants are bounded and the limiting curvature conjecture takes place.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2021 ◽  
Author(s):  
Thomas Berry

<p><b>The central theme of this thesis is the study and analysis of black hole mimickers. The concept of a black hole mimicker is introduced, and various mimicker spacetime models are examined within the framework of classical general relativity. The mimickers examined fall into the classes of regular black holes and traversable wormholes under spherical symmetry. The regular black holes examined can be further categorised as static spacetimes, however the traversable wormhole is allowed to have a dynamic (non-static) throat. Astrophysical observables are calculated for a recently proposed regular black hole model containing an exponential suppression of the Misner-Sharp quasi-local mass. This same regular black hole model is then used to construct a wormhole via the "cut-and-paste" technique. The resulting wormhole is then analysed within the Darmois-Israel thin-shell formalism, and a linearised stability analysis of the (dynamic) wormhole throat is undertaken. Yet another regular black hole model spacetime is proposed, extending a previous work which attempted to construct a regular black hole through a quantum "deformation" of the Schwarzschild spacetime. The resulting spacetime is again analysed within the framework of classical general relativity. </b></p><p>In addition to the study of black hole mimickers, I start with a brief overview of the theory of special relativity where a new and novel result is presented for the combination of relativistic velocities in general directions using quaternions. This is succeed by an introduction to concepts in differential geometry needed for the successive introduction to the theory of general relativity. A thorough discussion of the concept of spacetime singularities is then provided, before analysing the specific black hole mimickers discussed above.</p>


2011 ◽  
Vol 26 (14) ◽  
pp. 999-1007 ◽  
Author(s):  
JERZY MATYJASEK ◽  
KATARZYNA ZWIERZCHOWSKA

Perturbative solutions to the fourth-order gravity describing spherically-symmetric, static and electrically charged black hole in an asymptotically de Sitter universe is constructed and discussed. Special emphasis is put on the lukewarm configurations, in which the temperature of the event horizon equals the temperature of the cosmological horizon.


2016 ◽  
Vol 94 (12) ◽  
pp. 1369-1371 ◽  
Author(s):  
Gu-Qiang Li

The tunneling radiation of particles from Born–Infeld anti-de Sitter black holes is studied by using the Parikh–Wilczek method and the emission rate of a particle is calculated. It is shown that the emission rate is related to the change of the Bekenstein–Hawking entropy of the black hole and the emission spectrum deviates from the purely thermal spectrum but is consistent with an underlying unitary theory.


2020 ◽  
Vol 29 (11) ◽  
pp. 10-16
Author(s):  
Wontae KIM ◽  
Mu-In PARK

A black hole is a theoretical prediction of Einstein’s general theory of relativity, differently from Newtonian gravity, which is a non-relativistic gravity. In recent few years, its direct detection via gravitational waves and other multi-messenger observations have made it possible to test the prediction and hence its associated general relativity. From purely theoretical points of view, general relativity cannot be a complete description due to its not being compatible with quantum mechanics, which is a successful description of microscopic objects. In this article, we introduce the conceptional development of quantum-gravity theories and give brief sketches of fundamental problems in quantum black holes. As an interesting model of quantum black holes, we consider a collapsing shell of matter to form a Hayward black hole and investigate semiclassically quantum radiation from the shell. By using the Israel’s formulation and the functional Schrödinger formulation for massless quantum radiation, we find that the Hawking temperature can be deduced from the occupation number of excited states when the shell approaches its own horizon.


Sign in / Sign up

Export Citation Format

Share Document