scholarly journals A large-N expansion for minimum bias

2021 ◽  
Vol 2021 (10) ◽  
Author(s):  
Andrew J. Larkoski ◽  
Tom Melia

Abstract Despite being the overwhelming majority of events produced in hadron or heavy ion collisions, minimum bias events do not enjoy a robust first-principles theoretical description as their dynamics are dominated by low-energy quantum chromodynamics. In this paper, we present a novel expansion scheme of the cross section for minimum bias events that exploits an ergodic hypothesis for particles in the events and events in an ensemble of data. We identify power counting rules and symmetries of minimum bias from which the form of the squared matrix element can be expanded in symmetric polynomials of the phase space coordinates. This expansion is entirely defined in terms of observable quantities, in contrast to models of heavy ion collisions that rely on unmeasurable quantities like the number of nucleons participating in the collision, or tunes of parton shower parameters to describe the underlying event in proton collisions. The expansion parameter that we identify from our power counting is the number of detected particles N and as N → ∞ the variance of the squared matrix element about its mean, constant value on phase space vanishes. With this expansion, we show that the transverse momentum distribution of particles takes a universal form that only depends on a single parameter, has a fractional dispersion relation, and agrees with data in its realm of validity. We show that the constraint of positivity of the squared matrix element requires that all azimuthal correlations vanish in the N → ∞ limit at fixed center-of-mass energy, as observed in data. The approach we follow allows for a unified treatment of small and large system collective behavior, being equally applicable to describe, e.g., elliptic flow in PbPb collisions and the “ridge” in pp collisions. We also briefly comment on power counting and symmetries for minimum bias events in other collider environments and show that a possible ridge in e+e− collisions is highly suppressed as a consequence of its symmetries.

2003 ◽  
Vol 30 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Q. H. Zhang ◽  
J. Barrette ◽  
C. Gale

2008 ◽  
Vol 17 (06) ◽  
pp. 965-1014 ◽  
Author(s):  
STEFAN SCHERER ◽  
MARCUS BLEICHER ◽  
STEPHANE HAUSSLER ◽  
HORST STÖCKER

The recent discussion about experimental evidence for pentaquark states has revitalized the interest in exotic hadrons. If such states really exist, it is natural to assume that they will be formed at the late hadronization stage of ultra-relativistic heavy ion collisions, given the success of quark recombination models in the description of hadronization. Here, we apply the qMD model to study the formation of color neutral exotic multi-quark clusters at hadronization. We search for color neutral clusters made up of up to six color charges, respectively. We thus obtain estimates for the numbers and phase space distributions of exotic hadronic states produced by clustering in heavy ion collisions, including the members of the pentaquark multiplets. We obtain particle abundances that are smaller than thermal model predictions. Moreover, the results obtained in recombination from ultra-relativistic heavy ion collisions can be compared to the estimates based on equal population of the corresponding multiplets, and to results from fully thermalized systems. We find that the distribution of exotic hadrons from recombination over large multiplets provides a sensitive signal for thermalization and decorrelation of the initial, non-equilibrium state of the collision.


2006 ◽  
Vol 15 (01) ◽  
pp. 197-236 ◽  
Author(s):  
THOMAS J. HUMANIC

Identical boson Hanbury-Brown–Twiss interferometry as applied to relativistic heavy-ion collisions is reviewed. Emphasis is placed on the use of hadronic scattering models to interpret the physical significance of experimental results. Interferometric studies with center-of-mass energies from <1 GeV/nucleon up to 5500 GeV/nucleon are considered.


2011 ◽  
Vol 20 (07) ◽  
pp. 1545-1550
Author(s):  
◽  
MARTIN SPOUSTA

We present the measurement of jet production performed with the ATLAS detector in proton-proton collisions at center-of-mass energy of 7 TeV, using an integrated luminosity of 17 nb−1. We show the inclusive jet cross sections and jet shapes. The expected performance and strategy for the jet reconstruction in heavy ion collisions is also discussed.


1986 ◽  
Vol 447 ◽  
pp. 555-567 ◽  
Author(s):  
B. Remaud ◽  
F. Sebille ◽  
C. Gregoire ◽  
L. Vinet ◽  
Y. Raffray

1990 ◽  
Vol 103 (2) ◽  
pp. 309-316 ◽  
Author(s):  
A. Bonasera ◽  
G. F. Burgio ◽  
F. Gulminelli ◽  
H. H. Wolter

Sign in / Sign up

Export Citation Format

Share Document