scholarly journals Transverse-energy-energy correlations in deep inelastic scattering

2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Hai Tao Li ◽  
Ivan Vitev ◽  
Yu Jiao Zhu

Abstract Event shape observables have been widely used for precision QCD studies at various lepton and hadron colliders. We present the most accurate calculation of the transverse-energy-energy correlation event shape variable in deep-inelastic scattering. In the framework of soft-collinear effective theory the cross section is factorized as the convolution of the hard function, beam function, jet function and soft function in the back-to-back limit. A close connection to TMD factorization is established, as the beam function when combined with part of the soft function is identical to the conventional TMD parton distribution function, and the jet function is the second moment of the TMD fragmentation function matching coefficient. We validate our framework by comparing the obtained LO and NLO leading singular distributions to the full QCD calculations in the back-to-back limit. We report the resummed transverse-energy-energy correlation distributions up to N3LL accuracy matched with the NLO cross section for the production of a lepton and two jets. Our work provides a new way to precisely study TMD physics at the future Electron-Ion Collider.

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Jiawei Zhu ◽  
Daekyoung Kang ◽  
Tanmay Maji

Abstract Angularity is a class of event-shape observables that can be measured in deep-inelastic scattering. With its continuous parameter a one can interpolate angularity between thrust and broadening and further access beyond the region. Providing such systematic way to access various observables makes angularity attractive in analysis with event shapes. We give the definition of angularity for DIS and factorize the cross section by using soft-collinear effective theory. The factorization is valid in a wide range of a below and above thrust region but invalid in broadening limit. It contains an angularity beam function, which is new result and we give the expression at $$ \mathcal{O} $$ O (αs). We also perform large log resummation of angularity and make predictions at various values of a at next-to-next-to-leading log accuracy.


Sign in / Sign up

Export Citation Format

Share Document