scholarly journals Brown-York charges with mixed boundary conditions

2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Gloria Odak ◽  
Simone Speziale

Abstract We compute the Hamiltonian surface charges of gravity for a family of conservative boundary conditions, that include Dirichlet, Neumann, and York’s mixed boundary conditions defined by holding fixed the conformal induced metric and the trace of the extrinsic curvature. We show that for all boundary conditions considered, canonical methods give the same answer as covariant phase space methods improved by a boundary Lagrangian, a prescription recently developed in the literature and thus supported by our results. The procedure also suggests a new integrable charge for the Einstein-Hilbert Lagrangian, different from the Komar charge for non-Killing and non-tangential diffeomorphisms. We study how the energy depends on the choice of boundary conditions, showing that both the quasi-local and the asymptotic expressions are affected. Finally, we generalize the analysis to non-orthogonal corners, confirm the matching between covariant and canonical results without any change in the prescription, and discuss the subtleties associated with this case.

1981 ◽  
Vol 2 ◽  
pp. 29-33 ◽  
Author(s):  
Kolumban Hutter ◽  
Vincent O.S. Olunloyo

The existence of cold patches at the base of a glacier suggests that the sliding law will depend on these patches, which will essentially affect the viscosity constant. In a poly thermal glacier, such as a glacier which is cold in its lower part and temperate in its upper part, basal boundary conditions change from no-slip to viscous sliding. It is anticipated that the viscosity constant of this sliding law will depend on the distance from the transition line between cold and temperate ice.The mixed boundary conditions, namely no-slip where the ice is cold and viscous sliding where it is temperate, induce large stresses and velocity changes close to the transition line. In fact, it is shown that, for a Newtonian fluid and all investigated discontinuities of boundary data, square-root singularities of the stresses will develop at the transition line. Asymptotic expressions for the basal stresses are derived. The explicit forms of these asymptotic expansions depend on the form of the spatial dependence of the sliding law and, furthermore, on the numerical values of the viscosity coefficient. It is, moreover, argued that the stress concentrations are sufficiently pronounced to account for the removal of basal rock especially in regions of high cleavage concentrations, the details again depending upon the sliding coefficients.No mathematical details of the problem solved are presented as attention is focused on the physical processes.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Eva Llabrés

Abstract We find the most general solution to Chern-Simons AdS3 gravity in Fefferman-Graham gauge. The connections are equivalent to geometries that have a non-trivial curved boundary, characterized by a 2-dimensional vielbein and a spin connection. We define a variational principle for Dirichlet boundary conditions and find the boundary stress tensor in the Chern-Simons formalism. Using this variational principle as the departure point, we show how to treat other choices of boundary conditions in this formalism, such as, including the mixed boundary conditions corresponding to a $$ T\overline{T} $$ T T ¯ -deformation.


2003 ◽  
Vol 33 (4) ◽  
pp. 860-866 ◽  
Author(s):  
A.C. Aguiar Pinto ◽  
T.M. Britto ◽  
R. Bunchaft ◽  
F. Pascoal ◽  
F.S.S. da Rosa

Sign in / Sign up

Export Citation Format

Share Document