Vertex-Disjoint Triangles in Claw-Free Graphs with Minimum Degree at Least Three

COMBINATORICA ◽  
1998 ◽  
Vol 18 (3) ◽  
pp. 441-447 ◽  
Author(s):  
Hong Wang
2015 ◽  
Vol 24 (6) ◽  
pp. 873-928 ◽  
Author(s):  
ANDREW TREGLOWN

We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr-packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing.In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].


10.37236/499 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Michael A. Henning ◽  
Ingo Schiermeyer ◽  
Anders Yeo

For a graph $G$, let $\gamma(G)$ denote the domination number of $G$ and let $\delta(G)$ denote the minimum degree among the vertices of $G$. A vertex $x$ is called a bad-cut-vertex of $G$ if $G-x$ contains a component, $C_x$, which is an induced $4$-cycle and $x$ is adjacent to at least one but at most three vertices on $C_x$. A cycle $C$ is called a special-cycle if $C$ is a $5$-cycle in $G$ such that if $u$ and $v$ are consecutive vertices on $C$, then at least one of $u$ and $v$ has degree $2$ in $G$. We let ${\rm bc}(G)$ denote the number of bad-cut-vertices in $G$, and ${\rm sc}(G)$ the maximum number of vertex disjoint special-cycles in $G$ that contain no bad-cut-vertices. We say that a graph is $(C_4,C_5)$-free if it has no induced $4$-cycle or $5$-cycle. Bruce Reed [Paths, stars and the number three. Combin. Probab. Comput. 5 (1996), 277–295] showed that if $G$ is a graph of order $n$ with $\delta(G) \ge 3$, then $\gamma(G) \le 3n/8$. In this paper, we relax the minimum degree condition from three to two. Let $G$ be a connected graph of order $n \ge 14$ with $\delta(G) \ge 2$. As an application of Reed's result, we show that $\gamma(G) \le \frac{1}{8} ( 3n + {\rm sc}(G) + {\rm bc}(G))$. As a consequence of this result, we have that (i) $\gamma(G) \le 2n/5$; (ii) if $G$ contains no special-cycle and no bad-cut-vertex, then $\gamma(G) \le 3n/8$; (iii) if $G$ is $(C_4,C_5)$-free, then $\gamma(G) \le 3n/8$; (iv) if $G$ is $2$-connected and $d_G(u) + d_G(v) \ge 5$ for every two adjacent vertices $u$ and $v$, then $\gamma(G) \le 3n/8$. All bounds are sharp.


2019 ◽  
Vol 29 (1) ◽  
pp. 113-127
Author(s):  
Rajko Nenadov ◽  
Nemanja Škorić

AbstractGiven graphs G and H, a family of vertex-disjoint copies of H in G is called an H-tiling. Conlon, Gowers, Samotij and Schacht showed that for a given graph H and a constant γ>0, there exists C>0 such that if $p \ge C{n^{ - 1/{m_2}(H)}}$ , then asymptotically almost surely every spanning subgraph G of the random graph 𝒢(n, p) with minimum degree at least $\delta (G) \ge (1 - \frac{1}{{{\chi _{{\rm{cr}}}}(H)}} + \gamma )np$ contains an H-tiling that covers all but at most γn vertices. Here, χcr(H) denotes the critical chromatic number, a parameter introduced by Komlós, and m2(H) is the 2-density of H. We show that this theorem can be bootstrapped to obtain an H-tiling covering all but at most $\gamma {(C/p)^{{m_2}(H)}}$ vertices, which is strictly smaller when $p \ge C{n^{ - 1/{m_2}(H)}}$ . In the case where H = K3, this answers the question of Balogh, Lee and Samotij. Furthermore, for an arbitrary graph H we give an upper bound on p for which some leftover is unavoidable and a bound on the size of a largest H -tiling for p below this value.


2018 ◽  
Vol 28 (2) ◽  
pp. 159-176 ◽  
Author(s):  
JÓZSEF BALOGH ◽  
ANDREW TREGLOWN ◽  
ADAM ZSOLT WAGNER

A perfect H-tiling in a graph G is a collection of vertex-disjoint copies of a graph H in G that together cover all the vertices in G. In this paper we investigate perfect H-tilings in a random graph model introduced by Bohman, Frieze and Martin [6] in which one starts with a dense graph and then adds m random edges to it. Specifically, for any fixed graph H, we determine the number of random edges required to add to an arbitrary graph of linear minimum degree in order to ensure the resulting graph contains a perfect H-tiling with high probability. Our proof utilizes Szemerédi's Regularity Lemma [29] as well as a special case of a result of Komlós [18] concerning almost perfect H-tilings in dense graphs.


10.37236/415 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Charles Delorme ◽  
Guillermo Pineda-Villavicencio

The Moore bound constitutes both an upper bound on the order of a graph of maximum degree $d$ and diameter $D=k$ and a lower bound on the order of a graph of minimum degree $d$ and odd girth $g=2k+1$. Graphs missing or exceeding the Moore bound by $\epsilon$ are called graphs with defect or excess $\epsilon$, respectively. While Moore graphs (graphs with $\epsilon=0$) and graphs with defect or excess 1 have been characterized almost completely, graphs with defect or excess 2 represent a wide unexplored area. Graphs with defect (excess) 2 satisfy the equation $G_{d,k}(A) = J_n + B$ ($G_{d,k}(A) = J_n - B$), where $A$ denotes the adjacency matrix of the graph in question, $n$ its order, $J_n$ the $n\times n$ matrix whose entries are all 1's, $B$ the adjacency matrix of a union of vertex-disjoint cycles, and $G_{d,k}(x)$ a polynomial with integer coefficients such that the matrix $G_{d,k}(A)$ gives the number of paths of length at most $k$ joining each pair of vertices in the graph. In particular, if $B$ is the adjacency matrix of a cycle of order $n$ we call the corresponding graphs graphs with cyclic defect or excess; these graphs are the subject of our attention in this paper. We prove the non-existence of infinitely many such graphs. As the highlight of the paper we provide the asymptotic upper bound of $O(\frac{64}3d^{3/2})$ for the number of graphs of odd degree $d\ge3$ and cyclic defect or excess. This bound is in fact quite generous, and as a way of illustration, we show the non-existence of some families of graphs of odd degree $d\ge3$ and cyclic defect or excess. Actually, we conjecture that, apart from the Möbius ladder on 8 vertices, no non-trivial graph of any degree $\ge 3$ and cyclic defect or excess exists.


10.37236/6921 ◽  
2017 ◽  
Vol 24 (4) ◽  
Author(s):  
Julien Bensmail ◽  
Ararat Harutyunyan ◽  
Ngoc Khang Le ◽  
Binlong Li ◽  
Nicolas Lichiardopol

In this paper, we study the question of finding a set of $k$ vertex-disjoint cycles (resp. directed cycles) of distinct lengths in a given graph (resp. digraph). In the context of undirected graphs, we prove that, for every $k \geq 1$, every graph with minimum degree at least $\frac{k^2+5k-2}{2}$ has $k$ vertex-disjoint cycles of different lengths, where the degree bound is best possible. We also consider other cases such as when the graph is triangle-free, or the $k$ cycles are required to have different lengths modulo some value $r$. In the context of directed graphs, we consider a conjecture of Lichiardopol concerning the least minimum out-degree required for a digraph to have $k$ vertex-disjoint directed cycles of different lengths. We verify this conjecture for tournaments, and, by using the probabilistic method, for some regular digraphs and digraphs of small order.


Author(s):  
József Balogh ◽  
Béla Csaba ◽  
András Pluhár ◽  
Andrew Treglown

Abstract A perfect K r -tiling in a graph G is a collection of vertex-disjoint copies of the clique K r in G covering every vertex of G. The famous Hajnal–Szemerédi theorem determines the minimum degree threshold for forcing a perfect K r -tiling in a graph G. The notion of discrepancy appears in many branches of mathematics. In the graph setting, one assigns the edges of a graph G labels from {‒1, 1}, and one seeks substructures F of G that have ‘high’ discrepancy (i.e. the sum of the labels of the edges in F is far from 0). In this paper we determine the minimum degree threshold for a graph to contain a perfect K r -tiling of high discrepancy.


2009 ◽  
Vol 10 (03) ◽  
pp. 253-260 ◽  
Author(s):  
LUN-MIN SHIH ◽  
CHIEH-FENG CHIANG ◽  
LIH-HSING HSU ◽  
JIMMY J. M. TAN

The local connectivity of two vertices is defined as the maximum number of internally vertex-disjoint paths between them. In this paper, we define two vertices as maximally local-connected, if the maximum number of internally vertex-disjoint paths between them equals the minimum degree of these two vertices. Moreover, we show that an (n-1)-regular Cayley graph generated by transposition tree is maximally local-connected, even if there are at most (n-3) faulty vertices in it, and prove that it is also (n-1)-fault-tolerant one-to-many maximally local-connected.


1996 ◽  
Vol 5 (3) ◽  
pp. 277-295 ◽  
Author(s):  
Bruce Reed

A dominating set for a graph G is a set D of vertices of G such that every vertex of G not in D is adjacent to a vertex of D. We prove that any graph G of minimum degree at least three contains a dominating set D of size at most 3|V(G)|/8. A star S is a graph consisting of a centre x and a set of edges from x to S — x. Clearly, a dominating set D for a graph G corresponds to a set of |D| stars which cover V(G). Thus, we show that the vertices of any graph G of minimum degree 3 can be covered by at most 3|V(G)|/8 vertex disjoint stars. We also show that any connected cubic graph G can be covered by [|V(G)|/9] vertex disjoint paths. Both these results are sharp.


2002 ◽  
Vol 11 (1) ◽  
pp. 97-102 ◽  
Author(s):  
JACQUES VERSTRAËTE

Häggkvist and Scott asked whether one can find a quadratic function q(k) such that, if G is a graph of minimum degree at least q(k), then G contains vertex-disjoint cycles of k consecutive even lengths. In this paper, it is shown that if G is a graph of average degree at least k2+19k+10 with sufficiently many vertices, then G contains vertex-disjoint cycles of k consecutive even lengths, answering the above question in the affirmative. The coefficient of k2 cannot be decreased and, in this sense, this result is best possible.


Sign in / Sign up

Export Citation Format

Share Document