FAULT-TOLERANT MAXIMAL LOCAL-CONNECTIVITY ON CAYLEY GRAPHS GENERATED BY TRANSPOSITION TREES

2009 ◽  
Vol 10 (03) ◽  
pp. 253-260 ◽  
Author(s):  
LUN-MIN SHIH ◽  
CHIEH-FENG CHIANG ◽  
LIH-HSING HSU ◽  
JIMMY J. M. TAN

The local connectivity of two vertices is defined as the maximum number of internally vertex-disjoint paths between them. In this paper, we define two vertices as maximally local-connected, if the maximum number of internally vertex-disjoint paths between them equals the minimum degree of these two vertices. Moreover, we show that an (n-1)-regular Cayley graph generated by transposition tree is maximally local-connected, even if there are at most (n-3) faulty vertices in it, and prove that it is also (n-1)-fault-tolerant one-to-many maximally local-connected.

2019 ◽  
Vol 30 (08) ◽  
pp. 1301-1315 ◽  
Author(s):  
Liqiong Xu ◽  
Shuming Zhou ◽  
Weihua Yang

An interconnection network is usually modeled as a graph, in which vertices and edges correspond to processors and communication links, respectively. Connectivity is an important metric for fault tolerance of interconnection networks. A graph [Formula: see text] is said to be maximally local-connected if each pair of vertices [Formula: see text] and [Formula: see text] are connected by [Formula: see text] vertex-disjoint paths. In this paper, we show that Cayley graphs generated by [Formula: see text]([Formula: see text]) transpositions are [Formula: see text]-fault-tolerant maximally local-connected and are also [Formula: see text]-fault-tolerant one-to-many maximally local-connected if their corresponding transposition generating graphs have a triangle, [Formula: see text]-fault-tolerant one-to-many maximally local-connected if their corresponding transposition generating graphs have no triangles. Furthermore, under the restricted condition that each vertex has at least two fault-free adjacent vertices, Cayley graphs generated by [Formula: see text]([Formula: see text]) transpositions are [Formula: see text]-fault-tolerant maximally local-connected if their corresponding transposition generating graphs have no triangles.


Author(s):  
Pingshan Li ◽  
Rong Liu ◽  
Xianglin Liu

The Cayley graph generated by a transposition tree [Formula: see text] is a class of Cayley graphs that contains the star graph and the bubble sort graph. A graph [Formula: see text] is called strongly Menger (SM for short) (edge) connected if each pair of vertices [Formula: see text] are connected by [Formula: see text] (edge)-disjoint paths, where [Formula: see text] are the degree of [Formula: see text] and [Formula: see text] respectively. In this paper, the maximally edge-fault-tolerant and the maximally vertex-fault-tolerant of [Formula: see text] with respect to the SM-property are found and thus generalize or improve the results in [19, 20, 22, 26] on this topic.


1996 ◽  
Vol 5 (3) ◽  
pp. 277-295 ◽  
Author(s):  
Bruce Reed

A dominating set for a graph G is a set D of vertices of G such that every vertex of G not in D is adjacent to a vertex of D. We prove that any graph G of minimum degree at least three contains a dominating set D of size at most 3|V(G)|/8. A star S is a graph consisting of a centre x and a set of edges from x to S — x. Clearly, a dominating set D for a graph G corresponds to a set of |D| stars which cover V(G). Thus, we show that the vertices of any graph G of minimum degree 3 can be covered by at most 3|V(G)|/8 vertex disjoint stars. We also show that any connected cubic graph G can be covered by [|V(G)|/9] vertex disjoint paths. Both these results are sharp.


10.37236/4562 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Camino Balbuena ◽  
Florent Foucaud ◽  
Adriana Hansberg

Locating-dominating sets and identifying codes are two closely related notions in the area of separating systems. Roughly speaking, they consist in a dominating set of a graph such that every vertex is uniquely identified by its neighbourhood within the dominating set. In this paper, we study the size of a smallest locating-dominating set or identifying code for graphs of girth at least 5 and of given minimum degree. We use the technique of vertex-disjoint paths to provide upper bounds on the minimum size of such sets, and construct graphs who come close to meeting these bounds.


Author(s):  
Rong Liu ◽  
Pingshan Li

A graph [Formula: see text] is called strongly Menger edge connected (SM-[Formula: see text] for short) if the number of disjoint paths between any two of its vertices equals the minimum degree of these two vertices. In this paper, we focus on the maximally edge-fault-tolerant of the class of BC-networks (contain hypercubes, twisted cubes, Möbius cubes, crossed cubes, etc.) concerning the SM-[Formula: see text] property. Under the restricted condition that each vertex is incident with at least three fault-free edges, we show that even if there are [Formula: see text] faulty edges, all BC-networks still have SM-[Formula: see text] property and the bound [Formula: see text] is sharp.


Author(s):  
Ashwin Sah ◽  
Mehtaab Sawhney ◽  
Yufei Zhao

Abstract Does every $n$-vertex Cayley graph have an orthonormal eigenbasis all of whose coordinates are $O(1/\sqrt{n})$? While the answer is yes for abelian groups, we show that it is no in general. On the other hand, we show that every $n$-vertex Cayley graph (and more generally, vertex-transitive graph) has an orthonormal basis whose coordinates are all $O(\sqrt{\log n / n})$, and that this bound is nearly best possible. Our investigation is motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs are small-set expanders, extending a classic result of Alon–Roichman. His proof relies on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know cannot hold for general groups. On the other hand, we navigate around this obstruction and extend Naor’s result to nonabelian groups.


Author(s):  
Vytautas Gruslys ◽  
Shoham Letzter

Abstract Magnant and Martin conjectured that the vertex set of any d-regular graph G on n vertices can be partitioned into $n / (d+1)$ paths (there exists a simple construction showing that this bound would be best possible). We prove this conjecture when $d = \Omega(n)$ , improving a result of Han, who showed that in this range almost all vertices of G can be covered by $n / (d+1) + 1$ vertex-disjoint paths. In fact our proof gives a partition of V(G) into cycles. We also show that, if $d = \Omega(n)$ and G is bipartite, then V(G) can be partitioned into n/(2d) paths (this bound is tight for bipartite graphs).


2015 ◽  
Vol 24 (6) ◽  
pp. 873-928 ◽  
Author(s):  
ANDREW TREGLOWN

We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal–Szemerédi theorem characterizes the minimum degree that ensures a graph G contains a perfect Kr-packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least (1−1/r)n then G contains a perfect T-packing.In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all r ⩾ 3. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal Lemma [1, 6].


2014 ◽  
Vol 2014 ◽  
pp. 1-4
Author(s):  
A. Assari ◽  
F. Sheikhmiri

A Cayley graph of a group G is called normal edge-transitive if the normalizer of the right representation of the group in the automorphism of the Cayley graph acts transitively on the set of edges of the graph. In this paper, we determine all connected normal edge-transitive Cayley graphs of the group U6n.


Sign in / Sign up

Export Citation Format

Share Document