On the propagation of solitary waves in a prestressed thin elastic tube filled with an inviscid fluid

1998 ◽  
Vol 49 (4) ◽  
pp. 538 ◽  
Author(s):  
H. Demiray
2007 ◽  
Vol 62 (1-2) ◽  
pp. 21-28
Author(s):  
Hilmi Demiray

In this work, treating an artery as a prestressed thin-walled elastic tube and the blood as an inviscid fluid, the interactions of two nonlinear waves propagating in opposite directions are studied in the longwave approximation by use of the extended PLK (Poincaré-Lighthill-Kuo) perturbation method. The results show that up to O(k3), where k is the wave number, the head-on collision of two solitary waves is elastic and the solitary waves preserve their original properties after the interaction. The leading-order analytical phase shifts and the trajectories of two solitons after the collision are derived explicitly.


1999 ◽  
Vol 23 (2) ◽  
pp. 253-265
Author(s):  
H. Demiray

In this work, we study the propagation of weakly nonlinear waves in a prestressed thin elastic tube filled with an inviscid fluid. In the analysis, considering the physiological conditions under which the arteries function, the tube is assumed to be subjected to a uniform pressure P0 and a constant axial stretch ratio λz. In the course of blood flow in arteries, it is assumed that a finite time dependent radial displacement is superimposed on this static field but, due to axial tethering, the effect of axial displacement is neglected. The governing nonlinear equation for the radial motion of the tube under the effect of fluid pressure is obtained. Using the exact nonlinear equations of an incompressible inviscid fluid and the reductive perturbation technique, the propagation of weakly nonlinear waves in a fluid-filled thin elastic tube is investigated in the longwave approximation. The governing equation for this special case is obtained as the Korteweg-de-Vries equation. It is shown that, contrary to the result of previous works on the same subject, in the present work, even for Mooney-Rivlin material, it is possible to obtain the nonlinear Korteweg-de-Vries equation.


1998 ◽  
Vol 22 (8) ◽  
pp. 583-599 ◽  
Author(s):  
Hilmi Demiray ◽  
Sadik Dost
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document