weakly nonlinear waves
Recently Published Documents


TOTAL DOCUMENTS

68
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 1)

Author(s):  
Runze Xue ◽  
Rui Duan ◽  
Yuanliang Ma ◽  
Kunde Yang

The elevation of ocean waves is always modeled in linear theory as a superposition of the sinusoidal components with crests and troughs of identical heights. However, under some circumstances, the wave amplitude is outside the linear range and presents as a weakly nonlinear asymmetrical waveform with sharper crests and shallower troughs. We studied the impact of the weakly nonlinear effect of ocean waves in deep and intermediate waters on acoustic scattering from the surface of the ocean using two rough surface models with fractal geometry and power law spectral behavior in the equilibrium range. The classic Weierstrass–Mandelbrot function was used to model the linear waves and a new fractal function, the fractional Weierstrass function developed in studies of electromagnetism, was used to model the weakly nonlinear waves. We evaluated these two models using the Pierson–Moskowitz spectrum and the incident wavelength. The bistatic scattering strength was obtained via a numerical method based on the “exact” solution of the integral equation. The weakly nonlinear phenomenon led to a very small reduction in the narrow area around the specular reflection angle and a small increase in the remaining wide area, including the backpropagation area with a scattering angle [Formula: see text]. The differences in backscattering strength between the two models were similar to the bistatic scattering strength in the backpropagation area and did not depend on the incident grazing angle.


2021 ◽  
Author(s):  
Anna Kokorina ◽  
Alexey Slunyaev ◽  
Marco Klein

<p>The data of simultaneous measurements of the surface displacement produced by propagating planar waves in experimental flume and of the dynamic pressure fields beneath the waves are compared with the theoretical predictions based on different approximations for modulated potential gravity waves. The performance of different theories to reconstruct the pressure field from the known surface displacement time series (the direct problem) is investigated. A new two-component theory for weakly modulated weakly nonlinear waves is proposed, which exhibits the best capability among the considered. Peculiarities of the vertical modes of the nonlinear pressure harmonics are discussed.</p><p> </p><p>The work was supported by the RFBR projects 19-55-15005 and 20-05-00162 (AK).</p>


Fractals ◽  
2020 ◽  
Vol 28 (08) ◽  
pp. 2040007
Author(s):  
SHAHER MOMANI ◽  
OMAR ABU ARQUB ◽  
BANAN MAAYAH

In this paper, an attractive reliable analytical technique is implemented for constructing numerical solutions for the fractional Lienard’s model enclosed with suitable nonhomogeneous initial conditions, which are often designed to demonstrate the behavior of weakly nonlinear waves arising in the oscillating circuits. The fractional derivative is considered in the Atangana–Baleanu–Caputo sense. The proposed technique, namely, reproducing kernel Hilbert space method, optimizes numerical solutions bending on the Fourier approximation theorem to generate a required fractional solution with a rapidly convergent form. The influence, capacity, and feasibility of the presented approach are verified by testing some applications. The acquired results are numerically compared with the exact solutions in the case of nonfractional derivative, which show the superiority, compatibility, and applicability of the presented method to solve a wide range of nonlinear fractional models.


2020 ◽  
Vol 15 ◽  

Discovered experimentally by Russell and described theoretically by Korteweg and de Vries, KdV equation has been a nonlinear evolution equation describing the propagation of weakly dispersive and weakly nonlinear waves. This equation received a lot of attention from mathematical and physical communities as an integrable equation. The objectives of this paper are: first, providing a rigorous mathematical derivation of an extended KdV equations, one on the velocity, other on the surface elevation, next, solving explicitly the one on the velocity. In order to derive rigorously these equations, we will refer to the definition of consistency, and to find an explicit solution for this equation, we will use the sine-cosine method. As a result of this work, a rigorous justification of the extended Kdv equation of fifth order will be done, and an explicit solution of this equation will be derived.


Sign in / Sign up

Export Citation Format

Share Document