Star Product for Para-Grassmann Algebra of Order Two

2021 ◽  
Vol 31 (2) ◽  
Author(s):  
Yuri Markov ◽  
Margarita Markova
2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Yu. A. Markov ◽  
M. A. Markova

AbstractA connection between the deformed Duffin–Kemmer–Petiau (DKP) algebra and an extended system of the parafermion trilinear commutation relations for the creation and annihilation operators $$a^{\pm }_{k}$$ a k ± and for an additional operator $$a_{0}$$ a 0 obeying para-Fermi statistics of order 2 based on the Lie algebra $${\mathfrak {s}}{\mathfrak {o}}(2M+2)$$ s o ( 2 M + 2 ) is established. An appropriate system of the parafermion coherent states as functions of para-Grassmann numbers is introduced. The representation for the operator $$a_{0}$$ a 0 in terms of generators of the orthogonal group SO(2M) correctly reproducing action of this operator on the state vectors of Fock space is obtained. A connection of the Geyer operator $$a_{0}^{2}$$ a 0 2 with the operator of so-called G-parity and with the CPT- operator $${\hat{\eta }}_{5}$$ η ^ 5 of the DKP-theory is established. In a para-Grassmann algebra a noncommutative, associative star product $$*$$ ∗ (the Moyal product) as a direct generalization of the star product in the algebra of Grassmann numbers is introduced. Two independent approaches to the calculation of the Moyal product $$*$$ ∗ are considered. It is shown that in calculating the matrix elements in the basis of parafermion coherent states of various operator expressions it should be taken into account constantly that we work in the so-called Ohnuki and Kamefuchi’s generalized state-vector space $${\mathfrak {U}}_{\;G}$$ U G , whose state vectors include para-Grassmann numbers $$\xi _{k}$$ ξ k in their definition, instead of the standard state-vector space $${\mathfrak {U}}$$ U (the Fock space).


Author(s):  
Peter Adam ◽  
Vladimir A. Andreev ◽  
Margarita A. Man’ko ◽  
Vladimir I. Man’ko ◽  
Matyas Mechler
Keyword(s):  

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


2009 ◽  
Vol 2009 (07) ◽  
pp. 084-084 ◽  
Author(s):  
M Chaichian ◽  
A Tureanu ◽  
G Zet

2007 ◽  
Vol 28 (5) ◽  
pp. 483-488 ◽  
Author(s):  
Olga V. Man’ko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document