scholarly journals Generalization of Geyer’s commutation relations with respect to the orthogonal group in even dimensions

2020 ◽  
Vol 80 (12) ◽  
Author(s):  
Yu. A. Markov ◽  
M. A. Markova

AbstractA connection between the deformed Duffin–Kemmer–Petiau (DKP) algebra and an extended system of the parafermion trilinear commutation relations for the creation and annihilation operators $$a^{\pm }_{k}$$ a k ± and for an additional operator $$a_{0}$$ a 0 obeying para-Fermi statistics of order 2 based on the Lie algebra $${\mathfrak {s}}{\mathfrak {o}}(2M+2)$$ s o ( 2 M + 2 ) is established. An appropriate system of the parafermion coherent states as functions of para-Grassmann numbers is introduced. The representation for the operator $$a_{0}$$ a 0 in terms of generators of the orthogonal group SO(2M) correctly reproducing action of this operator on the state vectors of Fock space is obtained. A connection of the Geyer operator $$a_{0}^{2}$$ a 0 2 with the operator of so-called G-parity and with the CPT- operator $${\hat{\eta }}_{5}$$ η ^ 5 of the DKP-theory is established. In a para-Grassmann algebra a noncommutative, associative star product $$*$$ ∗ (the Moyal product) as a direct generalization of the star product in the algebra of Grassmann numbers is introduced. Two independent approaches to the calculation of the Moyal product $$*$$ ∗ are considered. It is shown that in calculating the matrix elements in the basis of parafermion coherent states of various operator expressions it should be taken into account constantly that we work in the so-called Ohnuki and Kamefuchi’s generalized state-vector space $${\mathfrak {U}}_{\;G}$$ U G , whose state vectors include para-Grassmann numbers $$\xi _{k}$$ ξ k in their definition, instead of the standard state-vector space $${\mathfrak {U}}$$ U (the Fock space).


2001 ◽  
Vol 16 (15) ◽  
pp. 963-971 ◽  
Author(s):  
WEIMIN YANG ◽  
SICONG JING

Structure of the state-vector space for a system consisting of one mode para-Bose and one mode para-Fermi degree of freedom with the same parastatistics order p is studied and a complete, orthonormal set of basis vectors in this space is constructed. There is an intrinsic double degeneracy for state vectors with m parabosons and n parafermions, where m ≠ 0, n ≠ 0 and n ≠ p. It is also shown that the degeneracy plays a key role in realization of exact supersymmetry for such a system.



2010 ◽  
Vol 25 (15) ◽  
pp. 2955-2964
Author(s):  
MIKLOS LÅNGVIK ◽  
ALI ZAHABI

We consider various modifications of the Weyl–Moyal star-product, in order to obtain a finite range of nonlocality. The basic requirements are to preserve the commutation relations of the coordinates as well as the associativity of the new product. We show that a modification of the differential representation of the Weyl–Moyal star-product by an exponential function of derivatives will not lead to a finite range of nonlocality. We also modify the integral kernel of the star-product introducing a Gaussian damping, but find a nonassociative product which remains infinitely nonlocal. We are therefore led to propose that the Weyl–Moyal product should be modified by a cutoff-like function, in order to remove the infinite nonlocality of the product. We provide such a product, but it appears that one has to abandon the possibility of analytic calculation with the new product.



1999 ◽  
Vol 32 (22) ◽  
pp. 4131-4138 ◽  
Author(s):  
Sicong Jing ◽  
Charles A Nelson


2002 ◽  
Vol 80 (2) ◽  
pp. 129-139 ◽  
Author(s):  
S -H Dong

A realization of the raising and lowering operators for the Morse potential is presented. We show that these operators satisfy the commutation relations for the SU(2) group. Closed analytical expressions are derived for the matrix elements of different functions such as 1/y and d/dy. The harmonic limit of the SU(2) operators is also studied. The transition probability between two eigenstates produced by a harmonic perturbation as a function of the operators [Formula: see text]±,0 is discussed. The average values of some observables in the coherent states |α > for the Morse potential are also calculated. PACS Nos.: 02.30+b, 03.65Fd, 42.50Ar, and 33.10Cs



2006 ◽  
Vol 45 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Jing Si-Cong ◽  
Tao Ling-Ping ◽  
Liu Qiu-Yu ◽  
Ruan Tu-Nan


2019 ◽  
Vol 31 (08) ◽  
pp. 1950026 ◽  
Author(s):  
Asao Arai

We introduce a concept of singular Bogoliubov transformation on the abstract boson Fock space and construct a representation of canonical commutation relations (CCRs) which is inequivalent to any direct sum of the Fock representation. Sufficient conditions for the representation to be irreducible are formulated. Moreover, an example of such representations of CCRs is given.



2014 ◽  
Vol 26 (06) ◽  
pp. 1450009
Author(s):  
Joachim Kupsch

Canonical transformations (Bogoliubov transformations) for fermions with an infinite number of degrees of freedom are studied within a calculus of superanalysis. A continuous representation of the orthogonal group is constructed on a Grassmann module extension of the Fock space. The pull-back of these operators to the Fock space yields a unitary ray representation of the group that implements the Bogoliubov transformations.



2011 ◽  
Vol 85 (1) ◽  
pp. 19-25
Author(s):  
YIN CHEN

AbstractLet Fq be a finite field with q elements, V an n-dimensional vector space over Fq and 𝒱 the projective space associated to V. Let G≤GLn(Fq) be a classical group and PG be the corresponding projective group. In this note we prove that if Fq (V )G is purely transcendental over Fq with homogeneous polynomial generators, then Fq (𝒱)PG is also purely transcendental over Fq. We compute explicitly the generators of Fq (𝒱)PG when G is the symplectic, unitary or orthogonal group.



1971 ◽  
Vol 23 (1) ◽  
pp. 12-21
Author(s):  
J. Malzan

If ρ(G) is a finite, real, orthogonal group of matrices acting on the real vector space V, then there is defined [5], by the action of ρ(G), a convex subset of the unit sphere in V called a fundamental region. When the unit sphere is covered by the images under ρ(G) of a fundamental region, we obtain a semi-regular figure.The group-theoretical problem in this kind of geometry is to find when the fundamental region is unique. In this paper we examine the subgroups, ρ(H), of ρ(G) with a view of finding what subspace, W of V consists of vectors held fixed by all the matrices of ρ(H). Any such subspace lies between two copies of a fundamental region and so contributes to a boundary of both. If enough of these boundaries might be found, the fundamental region would be completely described.



1998 ◽  
Vol 13 (34) ◽  
pp. 2731-2742 ◽  
Author(s):  
YUTAKA MATSUO

We give a reinterpretation of the matrix theory discussed by Moore, Nekrasov and Shatashivili (MNS) in terms of the second quantized operators which describes the homology class of the Hilbert scheme of points on surfaces. It naturally relates the contribution from each pole to the inner product of orthogonal basis of free boson Fock space. These bases can be related to the eigenfunctions of Calogero–Sutherland (CS) equation and the deformation parameter of MNS is identified with coupling of CS system. We discuss the structure of Virasoro symmetry in this model.



Sign in / Sign up

Export Citation Format

Share Document