Alienation of Cauchy’s and the quadratic functional equations on semigroups

Author(s):  
Brahim Fadli
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Murali Ramdoss ◽  
Divyakumari Pachaiyappan ◽  
Choonkil Park ◽  
Jung Rye Lee

AbstractThis research paper deals with general solution and the Hyers–Ulam stability of a new generalized n-variable mixed type of additive and quadratic functional equations in fuzzy modular spaces by using the fixed point method.


Author(s):  
Roman Ger

Abstract  We deal with an alienation problem for an Euler–Lagrange type functional equation $$\begin{aligned} f(\alpha x + \beta y) + f(\alpha x - \beta y) = 2\alpha ^2f(x) + 2\beta ^2f(y) \end{aligned}$$ f ( α x + β y ) + f ( α x - β y ) = 2 α 2 f ( x ) + 2 β 2 f ( y ) assumed for fixed nonzero real numbers $$\alpha ,\beta ,\, 1 \ne \alpha ^2 \ne \beta ^2$$ α , β , 1 ≠ α 2 ≠ β 2 , and the classic quadratic functional equation $$\begin{aligned} g(x+y) + g(x-y) = 2g(x) + 2g(y). \end{aligned}$$ g ( x + y ) + g ( x - y ) = 2 g ( x ) + 2 g ( y ) . We were inspired by papers of Kim et al. (Abstract and applied analysis, vol. 2013, Hindawi Publishing Corporation, 2013) and Gordji and Khodaei (Abstract and applied analysis, vol. 2009, Hindawi Publishing Corporation, 2009), where the special case $$g = \gamma f$$ g = γ f was examined.


1985 ◽  
Vol 98 (2) ◽  
pp. 195-212 ◽  
Author(s):  
Patrick J. McCarthy

AbstractThe quadratic functional equation f(f(x)) *–Tf(x) + Dx = 0 is equivalent to the requirement that the graph be invariant under a certain linear map The induced projective map is used to show that the equation admits a rich supply of continuous solutions only when L is hyperbolic (T2 > 4D), and then only when T and D satisfy certain further conditions. The general continuous solution of the equation is given explicitly in terms of either (a) an expression involving an arbitrary periodic function, function additions, inverses and composites, or(b) suitable limits of such solutions.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Margherita Fochi

Based on the studies on the Hyers-Ulam stability and the orthogonal stability of some Pexider-quadratic functional equations, in this paper we find the general solutions of two quadratic functional equations of Pexider type. Both equations are studied in restricted domains: the first equation is studied on the restricted domain of the orthogonal vectors in the sense of Rätz, and the second equation is considered on the orthogonal vectors in the inner product spaces with the usual orthogonality.


2013 ◽  
Vol 29 (1) ◽  
pp. 125-132
Author(s):  
CLAUDIA ZAHARIA ◽  
◽  
DOREL MIHET ◽  

We establish stability results concerning the additive and quadratic functional equations in complete Menger ϕ-normed spaces by using fixed point theory. As particular cases, some theorems regarding the stability of functional equations in β - normed and quasi-normed spaces are obtained.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Abasalt Bodaghi ◽  
Sang Og Kim

We obtain the general solution of the generalized mixed additive and quadratic functional equationfx+my+fx−my=2fx−2m2fy+m2f2y,mis even;fx+y+fx−y−2m2−1fy+m2−1f2y,mis odd, for a positive integerm. We establish the Hyers-Ulam stability for these functional equations in non-Archimedean normed spaces whenmis an even positive integer orm=3.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
M. Eshaghi Gordji ◽  
H. Khodaei ◽  
A. Ebadian ◽  
G. H. Kim

1985 ◽  
Vol 97 (2) ◽  
pp. 261-278 ◽  
Author(s):  
P. J. McCarthy ◽  
M. Crampin ◽  
W. Stephenson

AbstractThe requirement that the graph of a function be invariant under a linear map is equivalent to a functional equation of f. For area preserving maps M(det (M) = 1), the functional equation is equivalent to an (easily solved) linear one, or to a quadratic one of the formfor all Here 2C = Trace (M). It is shown that (Q) admits continuous solutions ⇔ M has real eigenvalues ⇔ (Q) has linear solutions f(x) = λx ⇔ |C| ≥ 1. For |c| = 1 or C < – 1, (Q) only admits a few simple solutions. For C > 1, (Q) admits a rich supply of continuous solutions. These are parametrised by an arbitrary function, and described in the sense that a construction is given for the graphs of the functions which solve (Q).


Sign in / Sign up

Export Citation Format

Share Document