Upper bound for the dimension of the center of a solvable Lie algebra

2000 ◽  
Vol 43 (2-3) ◽  
pp. 101-107
Author(s):  
J.C. Ndogmo
2003 ◽  
Vol 18 (09) ◽  
pp. 629-641 ◽  
Author(s):  
H. L. CARRION ◽  
M. ROJAS ◽  
F. TOPPAN

The symmetry algebra of a QFT in the presence of an external EM background (named "residual symmetry") is investigated within a Lie-algebraic, model-independent scheme. Some results previously encountered in the literature are extended here. In particular we compute the symmetry algebra for a constant EM background in D = 3 and D = 4 dimensions. In D = 3 dimensions the residual symmetry algebra, for generic values of the constant EM background, is isomorphic to [Formula: see text], with [Formula: see text] the centrally extended two-dimensional Poincaré algebra. In D = 4 dimension the generic residual symmetry algebra is given by a seven-dimensional solvable Lie algebra which is explicitly computed. Residual symmetry algebras are also computed for specific non-constant EM backgrounds and in the supersymmetric case for a constant EM background. The supersymmetry generators are given by the "square roots" of the deformed translations.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jonas Deré ◽  
Marcos Origlia

Abstract Every simply connected and connected solvable Lie group 𝐺 admits a simply transitive action on a nilpotent Lie group 𝐻 via affine transformations. Although the existence is guaranteed, not much is known about which Lie groups 𝐺 can act simply transitively on which Lie groups 𝐻. So far, the focus was mainly on the case where 𝐺 is also nilpotent, leading to a characterization depending only on the corresponding Lie algebras and related to the notion of post-Lie algebra structures. This paper studies two different aspects of this problem. First, we give a method to check whether a given action ρ : G → Aff ⁡ ( H ) \rho\colon G\to\operatorname{Aff}(H) is simply transitive by looking only at the induced morphism φ : g → aff ⁡ ( h ) \varphi\colon\mathfrak{g}\to\operatorname{aff}(\mathfrak{h}) between the corresponding Lie algebras. Secondly, we show how to check whether a given solvable Lie group 𝐺 acts simply transitively on a given nilpotent Lie group 𝐻, again by studying properties of the corresponding Lie algebras. The main tool for both methods is the semisimple splitting of a solvable Lie algebra and its relation to the algebraic hull, which we also define on the level of Lie algebras. As an application, we give a full description of the possibilities for simply transitive actions up to dimension 4.


2007 ◽  
Vol 37 (4) ◽  
pp. 1315-1326 ◽  
Author(s):  
Ahmet Temizyürek ◽  
Naime Ekici

2018 ◽  
Vol 106 (1) ◽  
pp. 104-126
Author(s):  
DMITRI I. PANYUSHEV ◽  
OKSANA S. YAKIMOVA

Let $G$ be a semisimple complex algebraic group with Lie algebra $\mathfrak{g}$. For a nilpotent $G$-orbit ${\mathcal{O}}\subset \mathfrak{g}$, let $d_{{\mathcal{O}}}$ denote the maximal dimension of a subspace $V\subset \mathfrak{g}$ that is contained in the closure of ${\mathcal{O}}$. In this note, we prove that $d_{{\mathcal{O}}}\leq {\textstyle \frac{1}{2}}\dim {\mathcal{O}}$ and this upper bound is attained if and only if ${\mathcal{O}}$ is a Richardson orbit. Furthermore, if $V$ is $B$-stable and $\dim V={\textstyle \frac{1}{2}}\dim {\mathcal{O}}$, then $V$ is the nilradical of a polarisation of ${\mathcal{O}}$. Every nilpotent orbit closure has a distinguished $B$-stable subspace constructed via an $\mathfrak{sl}_{2}$-triple, which is called the Dynkin ideal. We then characterise the nilpotent orbits ${\mathcal{O}}$ such that the Dynkin ideal (1) has the minimal dimension among all $B$-stable subspaces $\mathfrak{c}$ such that $\mathfrak{c}\cap {\mathcal{O}}$ is dense in $\mathfrak{c}$, or (2) is the only $B$-stable subspace $\mathfrak{c}$ such that $\mathfrak{c}\cap {\mathcal{O}}$ is dense in $\mathfrak{c}$.


2009 ◽  
Vol 24 (31) ◽  
pp. 5897-5924 ◽  
Author(s):  
DIMITRI POLYAKOV

We construct a sequence of nilpotent BRST charges in RNS superstring theory, based on new gauge symmetries on the worldsheet, found in this paper. These new local gauge symmetries originate from the global nonlinear space–time α-symmetries, shown to form a noncommutative ground ring in this work. The important subalgebra of these symmetries is U (3) × X6, where X6 is solvable Lie algebra consisting of six elements with commutators reminiscent of the Virasoro type. We argue that the new BRST charges found in this work describe the kinetic terms in string field theories around curved backgrounds of the AdS × CP n-type, determined by the geometries of hidden extra dimensions induced by the global α-generators. The identification of these backgrounds is however left for the work in progress.


Sign in / Sign up

Export Citation Format

Share Document