scholarly journals Characterization of a nuclear pore protein sheds light on the roles and composition of the Toxoplasma gondii nuclear pore complex

2017 ◽  
Vol 74 (11) ◽  
pp. 2107-2125 ◽  
Author(s):  
Flavie Courjol ◽  
Thomas Mouveaux ◽  
Kevin Lesage ◽  
Jean-Michel Saliou ◽  
Elisabeth Werkmeister ◽  
...  
1995 ◽  
Vol 6 (4) ◽  
pp. 546-554 ◽  
Author(s):  
S.M. Bailer ◽  
W.K. Berlin ◽  
C.M. Starr ◽  
J.A. Hanover

2018 ◽  
Vol 115 (17) ◽  
pp. E3969-E3977 ◽  
Author(s):  
Sasikumar Rajoo ◽  
Pascal Vallotton ◽  
Evgeny Onischenko ◽  
Karsten Weis

The nuclear pore complex (NPC) is an eightfold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ∼30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure. However, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed nuclear rim intensity measurement (NuRIM), to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC, suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM, we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188, that their altered expression leads to significant changes in the NPC stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.


Genetics ◽  
2010 ◽  
Vol 186 (2) ◽  
pp. 669-676 ◽  
Author(s):  
Kyoichi Sawamura ◽  
Kazunori Maehara ◽  
Shotaro Mashino ◽  
Tatsuo Kagesawa ◽  
Miyuki Kajiwara ◽  
...  

1988 ◽  
Vol 85 (24) ◽  
pp. 9595-9599 ◽  
Author(s):  
M. D'Onofrio ◽  
C. M. Starr ◽  
M. K. Park ◽  
G. D. Holt ◽  
R. S. Haltiwanger ◽  
...  

Biochemistry ◽  
1995 ◽  
Vol 34 (5) ◽  
pp. 1686-1694 ◽  
Author(s):  
W. A. Lubas ◽  
M. Smith ◽  
C. M. Starr ◽  
J. A. Hanover

Biochemistry ◽  
2019 ◽  
Vol 58 (50) ◽  
pp. 5085-5097 ◽  
Author(s):  
Heying Cui ◽  
Crystal R. Noell ◽  
Rachael P. Behler ◽  
Jacqueline B. Zahn ◽  
Lynn R. Terry ◽  
...  

1992 ◽  
Vol 11 (13) ◽  
pp. 5051-5061 ◽  
Author(s):  
C. Wimmer ◽  
V. Doye ◽  
P. Grandi ◽  
U. Nehrbass ◽  
E.C. Hurt

Sign in / Sign up

Export Citation Format

Share Document