scholarly journals Stoichiometry and compositional plasticity of the yeast nuclear pore complex revealed by quantitative fluorescence microscopy

2018 ◽  
Vol 115 (17) ◽  
pp. E3969-E3977 ◽  
Author(s):  
Sasikumar Rajoo ◽  
Pascal Vallotton ◽  
Evgeny Onischenko ◽  
Karsten Weis

The nuclear pore complex (NPC) is an eightfold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ∼30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure. However, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed nuclear rim intensity measurement (NuRIM), to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC, suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM, we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188, that their altered expression leads to significant changes in the NPC stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.

2017 ◽  
Author(s):  
Sasikumar Rajoo ◽  
Pascal Vallotton ◽  
Evgeny Onischenko ◽  
Karsten Weis

AbstractThe nuclear pore complex (NPC) is an 8-fold symmetrical channel providing selective transport of biomolecules across the nuclear envelope. Each NPC consists of ~30 different nuclear pore proteins (Nups) all present in multiple copies per NPC. Significant progress has recently been made in the characterization of the vertebrate NPC structure, however, because of the estimated size differences between the vertebrate and yeast NPC, it has been unclear whether the NPC architecture is conserved between species. Here, we have developed a quantitative image analysis pipeline, termed Nuclear Rim Intensity Measurement or NuRIM, to precisely determine copy numbers for almost all Nups within native NPCs of budding yeast cells. Our analysis demonstrates that the majority of yeast Nups are present at most in 16 copies per NPC. This reveals a dramatic difference to the stoichiometry determined for the human NPC suggesting that despite a high degree of individual Nup conservation, the yeast and human NPC architecture is significantly different. Furthermore, using NuRIM we examined the effects of mutations on NPC stoichiometry. We demonstrate for two paralog pairs of key scaffold Nups, Nup170/Nup157 and Nup192/Nup188 that their altered expression leads to significant changes in Nup stoichiometry inducing either voids in the NPC structure or substitution of one paralog by the other. Thus, our results not only provide accurate stoichiometry information for the intact yeast NPC but also reveal an intriguing compositional plasticity of the NPC architecture, which may explain how differences in NPC composition could arise in the course of evolution.SignificanceThe nuclear pore complex (NPC) is one of the largest protein complexes in eukaryotes comprising over 500 nucleoporin subunits. The NPC is essential for transport of biomolecules across the nuclear envelope, however, due to its enormous size, it has been a challenge to characterize its molecular architecture. Herein, we have developed a novel, widely applicable imaging pipeline to determine the absolute nucleoporin abundances in native yeast NPCs. This reveals that the NPC composition dramatically differs between yeast and human despite an overall conservation of individual subunits. We also applied our imaging pipeline to examine yeast mutants revealing a remarkable compositional plasticity of NPCs. Our stoichiometry analyses provide an important resource for the generation of high-resolution structure models of the NPC.


2006 ◽  
Vol 175 (4) ◽  
pp. 579-593 ◽  
Author(s):  
Benjamin L. Timney ◽  
Jaclyn Tetenbaum-Novatt ◽  
Diana S. Agate ◽  
Rosemary Williams ◽  
Wenzhu Zhang ◽  
...  

Many cargoes destined for nuclear import carry nuclear localization signals that are recognized by karyopherins (Kaps). We present methods to quantitate import rates and measure Kap and cargo concentrations in single yeast cells in vivo, providing new insights into import kinetics. By systematically manipulating the amounts, types, and affinities of Kaps and cargos, we show that import rates in vivo are simply governed by the concentrations of Kaps and their cargo and the affinity between them. These rates fit to a straightforward pump–leak model for the import process. Unexpectedly, we deduced that the main limiting factor for import is the poor ability of Kaps and cargos to find each other in the cytoplasm in a background of overwhelming nonspecific competition, rather than other more obvious candidates such as the nuclear pore complex and Ran. It is likely that most of every import round is taken up by Kaps and nuclear localization signals sampling other cytoplasmic proteins as they locate each other in the cytoplasm.


2010 ◽  
Vol 22 (12) ◽  
pp. 4084-4097 ◽  
Author(s):  
Kentaro Tamura ◽  
Yoichiro Fukao ◽  
Masaaki Iwamoto ◽  
Tokuko Haraguchi ◽  
Ikuko Hara-Nishimura

Nucleus ◽  
2010 ◽  
Vol 1 (2) ◽  
pp. 150-157 ◽  
Author(s):  
Erik W. Debler ◽  
Kuo-Chiang Hsia ◽  
Vivien Nagy ◽  
Hyuk-Soo Seo ◽  
André Hoelz

2021 ◽  
Author(s):  
Anne C Meinema ◽  
Theo Aspert ◽  
Sung Sik Lee ◽  
Gilles Charvin ◽  
Yves Barral

The nuclear pore complex (NPC) mediates nearly all exchanges between nucleus and cytoplasm, and changes composition in many species as the organism ages. However, how these changes arise and whether they contribute themselves to aging is poorly understood. We show that in replicatively aging yeast cells attachment of DNA circles to NPCs drives the displacement of the NPCs’ nuclear basket and cytoplasmic complexes. Remodeling of the NPC resulted from the regulation of basket components by SAGA, rather than from damages. These changes affected NPC interaction with mRNA export factors, without affecting the residence of import factors or engaging the NPC quality control machinery. Mutations preventing NPC remodeling extended the replicative lifespan of the cells. Thus, our data indicate that DNA circles accumulating in the mother cell drive aging at least in part by triggering NPC specialization. We suggest that antagonistic pleiotropic effects of NPC specialization are key drivers of aging.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Marzia Munafò ◽  
Victoria R Lawless ◽  
Alessandro Passera ◽  
Serena MacMillan ◽  
Susanne Bornelöv ◽  
...  

The Nuclear Pore Complex (NPC) is the principal gateway between nucleus and cytoplasm that enables exchange of macromolecular cargo. Composed of multiple copies of ~30 different nucleoporins (Nups), the NPC acts as a selective portal, interacting with factors which individually license passage of specific cargo classes. Here we show that two Nups of the inner channel, Nup54 and Nup58, are essential for transposon silencing via the PIWI-interacting RNA (piRNA) pathway in the Drosophila ovary. In ovarian follicle cells, loss of Nup54 and Nup58 results in compromised piRNA biogenesis exclusively from the flamenco locus, whereas knockdowns of other NPC subunits have widespread consequences. This provides evidence that some nucleoporins can acquire specialised roles in tissue-specific contexts. Our findings consolidate the idea that the NPC has functions beyond simply constituting a barrier to nuclear/cytoplasmic exchange, as genomic loci subjected to strong selective pressure can exploit NPC subunits to facilitate their expression.


2019 ◽  
Vol 116 (29) ◽  
pp. 14606-14613 ◽  
Author(s):  
Pascal Vallotton ◽  
Sasikumar Rajoo ◽  
Matthias Wojtynek ◽  
Evgeny Onischenko ◽  
Annemarie Kralt ◽  
...  

Selective transport across the nuclear envelope (NE) is mediated by the nuclear pore complex (NPC), a massive ∼100-MDa assembly composed of multiple copies of ∼30 nuclear pore proteins (Nups). Recent advances have shed light on the composition and structure of NPCs, but approaches that could map their organization in live cells are still lacking. Here, we introduce an in vivo method to perform nuclear radial intensity measurements (NuRIM) using fluorescence microscopy to determine the average position of NE-localized proteins along the nucleocytoplasmic transport axis. We apply NuRIM to study the organization of the NPC and the mobile transport machinery in budding yeast. This reveals a unique snapshot of the intact yeast NPC and identifies distinct steady-state localizations for various NE-associated proteins and nuclear transport factors. We find that the NPC architecture is robust against compositional changes and could also confirm that in contrast to Chlamydomonas reinhardtii, the scaffold Y complex is arranged symmetrically in the yeast NPC. Furthermore, NuRIM was applied to probe the orientation of intrinsically disordered FG-repeat segments, providing insight into their roles in selective NPC permeability and structure.


1980 ◽  
Vol 43 (1) ◽  
pp. 253-267
Author(s):  
J.C. Richardson ◽  
A.H. Maddy

Purified nuclei retaining a high degree of ultrastructural integrity were isolated by conventional centrifugation techniques. The cytoplasmic surface of these nuclei was iodinated using lactoperoxidase immobilized onto giant Sepharose beads; thus the outer nuclear membrane and the cytoplasmic surface of nuclear pore complexes were selectively labelled. Pore complexes in association with a fibrous lamina were isolated from these nuclei by removal of the nucleoplasm and extraction with Triton X-100. The chemical composition of the pore-lamina fraction was 93.6% protein, 6% RNA, 0.4% phospholipid. The labelling suggests that major polypeptides N1 (70 000) and N2 (67 000) and more than 10 other more minor polypeptides, ranging from 33 000 to 200 000 mol. wt, as being components of the nuclear pore complex. Polypeptide N3 (58 000) is shown to be present only on the nucleoplasmic face of nuclear envelopes, probably in the fibrous lamina.


Sign in / Sign up

Export Citation Format

Share Document