adapter proteins
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 37)

H-INDEX

55
(FIVE YEARS 2)

Author(s):  
Chloe M. McKee ◽  
Fabian A. Fischer ◽  
Jelena S. Bezbradica ◽  
Rebecca C. Coll

Inflammasomes are protein complexes in the innate immune system that regulate the production of pro-inflammatory cytokines and inflammatory cell death. Inflammasome activation and subsequent cell death often occur within minutes to an hour, so the pathway must be dynamically controlled to prevent excessive inflammation and the development of inflammatory diseases. Phosphorylation is a fundamental post-translational modification that allows rapid control over protein function and the phosphorylation of inflammasome proteins has emerged as a key regulatory step in inflammasome activation. Phosphorylation of inflammasome sensor and adapter proteins regulates their inter- and intra-molecular interactions, subcellular localisation, and function. The control of inflammasome phosphorylation may thus provide a new strategy for the development of anti-inflammatory therapeutics. Herein we describe the current knowledge of how phosphorylation operates as a critical switch for inflammasome signalling.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anja Adelina Giese ◽  
Aaron Babendreyer ◽  
Peter Krappen ◽  
Annika Gross ◽  
Pavel Strnad ◽  
...  

AbstractThe metalloproteinase ADAM17 contributes to inflammatory and proliferative responses by shedding of cell-surface molecules. By this ADAM17 is implicated in inflammation, regeneration, and permeability regulation of epithelial cells in the colon. ADAM17 maturation and surface expression requires the adapter proteins iRhom1 or iRhom2. Here we report that expression of iRhom2 but not iRhom1 is upregulated in intestinal tissue of mice with acute colitis. Our analysis of public databases indicates elevated iRhom2 expression in mucosal tissue and epithelial cells from patients with inflammatory bowel disease (IBD). Consistently, expression of iRhom2 but not iRhom1 is upregulated in colon or intestinal epithelial cell lines after co-stimulation with tumor necrosis factor (TNF) and interferon gamma (IFNgamma). This upregulation can be reduced by inhibition of Janus kinases or transcription factors NF-kappaB or AP-1. Upregulation of iRhom2 can be mimicked by iRhom2 overexpression and is associated with enhanced maturation and surface expression of ADAM17 which then results in increased cleavage of transforming growth factor (TGF) alpha and junctional adhesion molecule (JAM)-A. Finally, the induction of these responses is suppressed by inhibition of iRhom2 transcription. Thus, inflammatory induction of iRhom2 may contribute to upregulated ADAM17-dependent mediator and adhesion molecule release in IBD. The development of iRhom2-dependent inhibitors may allow selective targeting of inflammatory ADAM17 activities.


2021 ◽  
Author(s):  
dawei deng ◽  
lijuan zeng ◽  
qi zhou ◽  
chen pan ◽  
fangyue guo ◽  
...  

Abstract Background: Downstream of kinase (DOKs), a family of adapter proteins, are frequently depicted as pivotal components of immune regulation complexes involved in the tumor progression in a wide range of cancers. Regrettably, little is known about the expression patterns and exact roles of 7 identified DOKs in pancreatic cancer (PC). Methods: In this study, we investigated the distinct expression and biological function of DOKs in PC using multiple public databases, including ONCOMINE, GEPIA, cBioPortal, and Kaplan-Meier plotter. The correlations between DOKs and cancer immune infiltrates was investigated via TIMER. In addition, we subsequently verified those in an independent cohort. Results: The expression levels of DOKs were found to be significantly upregulated in PC, interestingly higher DOK1/3/6 expressions were correlated with shorter overall survival (OS). Moreover, DOK1/2/3/5/6 had a dramatical positive correlation with the immune infiltration of PC and programmed cell death-ligand 1 (PD-L1). Conclusion: DOK1/3/6 may function as potential prognostic biomarkers and even promising immune checkpoints for PC immunotherapy.


2021 ◽  
Vol 12 ◽  
Author(s):  
Nirdosh Dadwal ◽  
Charlie Mix ◽  
Annegret Reinhold ◽  
Amelie Witte ◽  
Christian Freund ◽  
...  

T cells are the key players of the adaptive immune response. They coordinate the activation of other immune cells and kill malignant and virus-infected cells. For full activation T cells require at least two signals. Signal 1 is induced after recognition of MHC/peptide complexes presented on antigen presenting cells (APCs) by the clonotypic TCR (T-cell receptor)/CD3 complex whereas Signal 2 is mediated via the co-stimulatory receptor CD28, which binds to CD80/CD86 molecules that are present on APCs. These signaling events control the activation, proliferation and differentiation of T cells. In addition, triggering of the TCR/CD3 complex induces the activation of the integrin LFA-1 (leukocyte function associated antigen 1) leading to increased ligand binding (affinity regulation) and LFA-1 clustering (avidity regulation). This process is termed “inside-out signaling”. Subsequently, ligand bound LFA-1 transmits a signal into the T cells (“outside-in signaling”) which enhances T-cell interaction with APCs (adhesion), T-cell activation and T-cell proliferation. After triggering of signal transducing receptors, adapter proteins organize the proper processing of membrane proximal and intracellular signals as well as the activation of downstream effector molecules. Adapter proteins are molecules that lack enzymatic or transcriptional activity and are composed of protein-protein and protein-lipid interacting domains/motifs. They organize and assemble macromolecular complexes (signalosomes) in space and time. Here, we review recent findings regarding three cytosolic adapter proteins, ADAP (Adhesion and Degranulation-promoting Adapter Protein), SKAP1 and SKAP2 (Src Kinase Associated Protein 1 and 2) with respect to their role in TCR/CD3-mediated activation, proliferation and integrin regulation.


2021 ◽  
Vol 14 (687) ◽  
pp. eabb4752
Author(s):  
Fu Hsin ◽  
Yu-Chen Hsu ◽  
Yu-Fei Tsai ◽  
Shu-Wha Lin ◽  
Helene Minyi Liu

Many viral proteases mediate the evasion of antiviral innate immunity by cleaving adapter proteins in the interferon (IFN) induction pathway. Host proteases are also involved in innate immunity and inflammation. Here, we report that the transmembrane protease hepsin (also known as TMPRSS1), which is predominantly present in hepatocytes, inhibited the induction of type I IFN during viral infections. Knocking out hepsin in mouse embryonic fibroblasts (MEFs) increased the viral infection–induced expression of Ifnb1, an Ifnb1 promoter reporter, and an IFN-sensitive response element promoter reporter. Ectopic expression of hepsin in cultured human hepatocytes and HEK293T cells suppressed the induction of IFNβ during viral infections by reducing the abundance of STING. These effects depended on the protease activity of hepsin. We identified a putative hepsin target site in STING and showed that mutating this site protected STING from hepsin-mediated cleavage. In addition to hepatocytes, several hepsin-producing prostate cancer cell lines showed reduced STING-mediated type I IFN induction and responses. These results reveal a role for hepsin in suppressing STING-mediated type I IFN induction, which may contribute to the vulnerability of hepatocytes to chronic viral infections.


2021 ◽  
pp. 175342592110130
Author(s):  
Isaac M Bugueno ◽  
Nadia Benkirane-Jessel ◽  
Olivier Huck

Periodontitis is induced by periodontal dysbiosis characterized by the predominance of anaerobic species. TLRs constitute the classical pathway for cell activation by infection. Interestingly, the Toll/IL-1 receptor homology domain adapters initiate signaling events, leading to the activation of the expression of the genes involved in the host immune response. The aim of this study was to evaluate the effects of Porphyromonas gingivalis on the expression and protein-protein interactions among five TIR adapters (MAL, MyD88, TRIF, TRAM and SARM) in gingival epithelial cells and endothelial cells. It was observed that P. gingivalis is able to modulate the signaling cascades activated through its recognition by TLR4/2 in gingival epithelial cells and endothelial cells. Indeed, MAL-MyD88 protein-protein interactions associated with TLR4 was the main pathway activated by P. gingivalis infection. When transient siRNA inhibition was performed, cell viability, inflammation, and cell death induced by infection decreased and such deleterious effects were almost absent when MAL or TRAM were targeted. This study emphasizes the role of such TIR adapter proteins in P. gingivalis elicited inflammation and the precise evaluation of TIR adapter protein interactions may pave the way for future therapeutics in both periodontitis and systemic disease with a P. gingivalis involvement, such as atherothrombosis.


Author(s):  
Babban Jee ◽  
Ruby Dhar ◽  
Sunil Singh ◽  
Subhradip Karmakar

Pregnancy in humans is a multi-step complex physiological process comprising three discrete events, decidualization, implantation and placentation. Its overall success depends on the incremental advantage that each of the preceding stages passes on to the next. The success of these synchronized sequels of events is an outcome of timely coordination between them. The pregnancy events are coordinated and governed primarily by the ovarian steroid hormones, estrogen and progesterone, which are essentially ligand-activated transcription factors. It’s well known that intercellular signaling of steroid hormones engages a plethora of adapter proteins that participate in executing the biological functions. This involves binding of the hormone receptor complex to the DNA response elements in a sequence specific manner. Working with Drosophila melanogaster, the heat shock proteins (HSPs) were originally described by Ferruccio Ritossa back in the early 1960s. Over the years, there has been considerable advancement of our understanding of these conserved families of proteins, particularly in pregnancy. Accumulating evidence suggests that endometrial and uterine cells have an abundance of HSP27, HSP60, HSP70 and HSP90, implying their possible involvement during the pregnancy process. HSPs have been found to be associated with decidualization, implantation and placentation, with their dysregulation associated with implantation failure, pregnancy loss and other feto-maternal complications. Furthermore, HSP is also associated with stress response, specifically in modulating the ER stress, a critical determinant for reproductive success. Recent advances suggest a therapeutic role of HSPs proteins in improving the pregnancy outcome. In this review, we summarized our latest understanding of the role of different members of the HSP families during pregnancy and associated complications based on experimental and clinical evidences, thereby redefining and exploring their novel function with new perspective, beyond their prototype role as molecular chaperones.


Genetics ◽  
2021 ◽  
Author(s):  
Rochele Yamamoto ◽  
Michael Palmer ◽  
Helen Koski ◽  
Noelle Curtis-Joseph ◽  
Marc Tatar

Abstract Mutations of the Drosophila melanogaster insulin/IGF signaling system slow aging, while also affecting growth and reproduction. To understand this pleiotropy, we produced an allelic series of single codon substitutions in the Drosophila insulin receptor, InR. We generated InR substitutions using homologous recombination and related each to emerging models of receptor tyrosine kinase structure and function. Three mutations when combined as trans-heterozygotes extended lifespan while retarding growth and fecundity. These genotypes reduced insulin-stimulated Akt phosphorylation, suggesting they impede kinase catalytic domain function. Among these genotypes, longevity was negatively correlated with egg production, consistent with life history trade-off theory. In contrast, one mutation (InR  353) was located in the kinase insert domain, a poorly characterized element found in all receptor tyrosine kinases. Remarkably, wildtype heterozygotes with InR  353 robustly extended lifespan without affecting growth or reproduction and retained capacity to fully phosphorylate Akt. The Drosophila insulin receptor kinase insert domain contains a previously unrecognized SH2 binding motif. We propose the kinase insert domain interacts with SH2-associated adapter proteins to affect aging through mechanisms that retain insulin sensitivity and are independent of reproduction.


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 9
Author(s):  
Claudia Lee ◽  
Gayathri Viswanathan ◽  
Issac Choi ◽  
Chanpreet Jassal ◽  
Taylor Kohlmann ◽  
...  

The vascular endothelium is the innermost layer of blood vessels and is a key regulator of vascular tone. Endothelial function is controlled by receptor signaling through G protein-coupled receptors, receptor tyrosine kinases and receptor serine-threonine kinases. The β-arrestins, multifunctional adapter proteins, have the potential to regulate all of these receptor families, although it is unclear as to whether they serve to integrate signaling across all of these different axes. Notably, the β-arrestins have been shown to regulate signaling by a number of receptors important in endothelial function, such as chemokine receptors and receptors for vasoactive substances such as angiotensin II, endothelin-1 and prostaglandins. β-arrestin-mediated signaling pathways have been shown to play central roles in pathways that control vasodilation, cell proliferation, migration, and immune function. At this time, the physiological impact of this signaling has not been studied in detail, but a deeper understanding of it could lead to the development of novel therapies for the treatment of vascular disease.


2020 ◽  
Vol 24 (1) ◽  
pp. 105-113
Author(s):  
L. V. Matveeva ◽  
R. H. Kapkaeva ◽  
A. N. Chudajkin ◽  
L. V. Novikova

Helicobacter pylori is a unique microorganism capable of long-term colonization of the gastric mucosa, induction of the inflammatory process, antigenic mimicry and immune evasia. Flagella proteins, adhesins, invasive and aggressive enzymes, cytotoxin-associated protein, vacuolating cytotoxin can have a damaging effect on stomach epithelial cells. Recognition of molecular patterns of Helicobacter pylori by stomach cell receptors initiates activation of adapter proteins, protein kinases and transcription factors, leading to the production of proinflammatory cytokines, infiltration by neutrophilic granulocytes, absorption and killing of microorganisms by phagocytes with presentation of antigens to lymphocytes, while the activity and completeness of phagocytosis remain at a low level. Activation of CD8+-, CD16+- lymphocytes is accompanied by cytotoxic effect on both Helicobacter pylori and epithelial cells of the gastric mucosa. Weak immunogenicity of Helicobacter pylori antigens limits the production of anti-Helicobacter antibodies. Thus, activation of immune factors, in most cases, does not lead to complete elimination of the pathogen, but can aggravate the pathomorphological changes of the gastric epithelium.


Sign in / Sign up

Export Citation Format

Share Document